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Chapter 1

Empirical Minimization Risk and

VC Dimension

Statistics Learning and Deep Learning July 10,2022

Lecture Note

Lecturer: Satyanath Bhat Scriber: Bin Yu

1.1 Introduction

In the section, we will give the brief introduction about the statistical learning. And we

focus on the classification task and introduce the definition X ∈ R
d → feature space,

y → {−1, 1}, SN = {(xi, yi)}Ni=1, H → hypothesis class collection of classifier, classifier h :

X → Y (A) where A is the learning algorithm, the goodness of a classifier L : A×Y → R
+,

R(h) = EX,Y (L(h(x), y)), and h⋆ = argminh∈HR(h)

We will introduce the empirical risk minimization

R̂n(h) =
1

n

n∑
i

L(h(xi), yi) (1.1)

this method will determine the empirical classifier h⋆n = argminR̂n(h)

We face a question that we do not know the exact joint probability distribution, that is
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why we introduce the empirical risk to estimate the classifier. However it will trigger new

questions

1. Choice of H. In the sense, the h⋆ will be not optimal. Because h⋆ depends the

hypothesis, and the hypothesis set is finite.

2. ĥ⋆n →n→∞ h⋆, we cannot guarantee whether this estimate can converge to optimal

classifier.

In the machine learning community, the L((h(x), y)) is the out-sample performance and

L((h(xi), yi)) is the in-sample performance

1.2 Perceptron

In this section, we will introduce the basic idea of perceptron. The figure shows that if we

have the labeled data and can find the hyperplane to separate. The red line represents the

optimal hyperplane and blue one represents the initial hyperplane. Our goal is to make

initial one converge to the optimal solution.

Theorem 1. Weak law of large numbers: If we haveX →n
i.i.d {Xi}i=1, then E(x) = µ,

µ̂ = 1
n

∑n
i=1Xi

µ̂n →n µ

∀ ϵ δ ∃N s.t. P(|µ̂n − µ| > ϵ) < δ,∀n ≥ N

Let us consider the H. Fix h ∈ H

R̂n(h) =
1

n

n∑
i=1

1{h(xi) ̸= yi} (1.2)

∀ ϵ δ > 0

P(|R̂n(h−R(h))| > ϵ) < δ ∀n ≥ N (1.3)

1.2.1 Uniform convergence

∀ ϵ δ > 0 ∃N s.t.

P(sup
h∈H
|R̂n(h−R(h))| > ϵ) < δ ∀n ≥ N (1.4)

Obviously, the uniform convergence is stronger than weak law of large number. Vapnik and

Chervonenkis (2015) shows the detail of uniform convergence. Thus the formula indicates
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Figure 1.1: Example of Perceptron
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• the consistency ⇐⇒ uniform convergence

• uniform convergence → weak law of large number

1.3 Uniform Convergence

We review the definition of consistency

∀ ϵ δ > 0, ∃ N s.t.

P

[
|R(ĥ⋆n)−R(h⋆)| > ϵ

]
< δ ∀n ≥ N

(1.5)

In the first lecture, we hold that the uniform convergence ⇐⇒ consistency. We will discuss

the detail about this argument. It is intuition to show that uniform convergence → weak

law of large number.

We will prove we cannot hold uniform convergence ← weak law of large number.

R(ĥ⋆n)−R(h⋆)

=R(ĥ⋆n)− R̂(ĥ⋆n) + R̂(ĥ⋆n)− R̂(h⋆n) + R̂(h⋆n)−R(h⋆)

≤R(ĥ⋆n)− R̂(ĥ⋆n) + R̂(h⋆n)−R(h⋆)

Note that the second term will be negative because ĥ⋆n is the optimal solution of R̂n

|R(ĥ⋆n)−R(h⋆)| ≤ sup
h∈H

2|R̂(h⋆n)−R(h⋆)| (1.6)

Since the weak law of large number

1.3.1 Original Problem

We like to show that

R(ĥ⋆n)→ R(h⋆) (1.7)

However it is difficult to prove that and modify the problem below

∀ ϵ δ > 0, ∃ N s.t.

P

[
|R̂n(h)−R(h)| > ϵ

]
< δ ∀n ≥ N

(1.8)

Discuss finite and infinite cases
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• |H| = m <∞

Recall the definition

R(h) = E
[
1h(x)̸=y

]
R̂n(h) =

1

n

∑
i

(
1h(xi )̸=yi

)
The Hoeffding’s inequality imply

P(|R̂n(h)−R(h)| > ϵ) < 2 exp−2nϵ2 (1.9)

denote Ei = {|R̂n(hi)−R(hi)| > ϵ} by event

P(∪mi Ei) ≤ 2m exp−2nϵ2 (1.10)

• Infinite

P

(
sup
h∈H
|R̂n −R(h)| > ϵ

)
< C1π(n) exp−C2nϵ

2 (1.11)

Where C1, C2 are the coefficient and π(n) is the growth function

1.4 Ghost Sample

we will show

P

(
sup
h∈H
|R̂n(h)−R(h)| > ϵ

)
≤ 2P

(
sup
h∈H
|Rn(h)−R′

n(h)| > ϵ/2

)
(1.12)

where R′
n(h) =

∑
1h(x′

i
)̸=y′

i
n

1.5 Empirical Risk Minimization

• X feature space

• y → {0, 1}

• PX,Y joint distribution

• Sn = | = {(xi, yi)}ni=1

• h : X → A A is the action. The second definition is h : X → {−1, 1}. It means the

classifiers is the convex set
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• H collection of hypothesis

• L : A× y → R is the loss function

• Risk(out of sample) R(h) = EX,Y (L(h(x), y))

• h⋆ = argminR(h)

• R̂n(h) =
1
n

∑
i L(h(xi), yi)

• ĥ⋆n = argminR̂n(h)

we have the argument that

ĥ⋆n →n→∞ h⋆ (1.13)

Generally understand the difference between regression and classification task.

Regression E[y|X = x]

Classification P(Y = y|X = x)
(1.14)

And the empirical risk minimization has the consistency property ∀ϵ, δ > 0,∃N s.t.

P(|R(ĥ⋆n)−R(h⋆)| > ϵ) < δ (1.15)

1.6 Uniform Convergence

The consistency is equivalent with uniform convergence ∀ϵ, δ > 0,∃N s.t.

P(sup
h∈H
|R̂n(h)−R(h)| > ϵ) < δ (1.16)

Discuss two cases of hypothesis which is finite and infinite. Let consider the finite case

firstly. Our goal is to search for H which satisfies uniform convergence

P(sup
h∈H
|R̂n(h)−R(h)| > ϵ) < C1πH(n) exp−C2nϵ2 (1.17)

where C1, C2 are coefficients and πH(n) is the growth function with figure 1.6
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Figure 1.2: VC Dimension

1.6.1 Ghost Sample

We like to use the ghost sample step show that

P(sup
h∈H
|R̂n(h)−R(h)| > ϵ) < 2P(sup

h∈H
|R̂n(h)−R′

n(h)| >
ϵ

2
) (1.18)

where S′
n represents the ghost sample

R′
n(h) =

1

n

∑
L(h(x′i), y

′
i)

S′
n = (x′i, y

′
i)

(1.19)

We can prove by the contradiction and assume hB with the bad hypothesis

P

(
sup
h∈H
|R̂n(h)−R(h)| > ϵ

)
= P

(
|R̂n(hB)−R(hB)| > ϵ

)
(1.20)

Approximately

P

(
sup
h∈H
|R̂n(h)−R′

n(h)| >
ϵ

2

)
≥ P

(
|R̂n(hB)−R′

n(hB)| >
ϵ

2

)
(1.21)

we can analysis two event

C1 = {|R̂n(hB)−R(hB)| > ϵ}

C2 = {|R′(hB)−R(hB)| <
ϵ

2
}

(1.22)
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In R′
n(hB), the random source is Sn, S

′
n. And in R(hB), the random source is Sn

Proposition 2.

P(f(x, y) ≥ a) = EyPX|Y (f(x, y) ≥ a|y)

E[X] = E[E[X|Y ]]
(1.23)

continue to discuss the consistency

P

(
|R̂n(hB)−R′

n(hB)| >
ϵ

2

)
≥ P(C1 ∩ C2)

= E[1C11C2 ]

= ESn [1C1ES′
n|Sn

[1C2 ]]

= P(|R′
n(hB)−R(hB)| <

ϵ

2
|Sn)

≥ 1− 4
V ar(R′

n(hB))

ϵ

≥ 1− 1

nϵ2

≥ 1

2

(1.24)

Go back this proabblility

P

(
sup
h∈H
|R̂n(h)−R′

n(h)| >
ϵ

2

)
≥ 1

2
P(C1)

=
1

2
P

[
|R̂n(hB)−R(hB)| > ϵ

]
=

1

2
P

(
sup
h∈H
|R̂n(h)−Rn(h)| > ϵ

) (1.25)

1.6.2 Symmetrization

P

(
sup
h∈H
|R̂n(h)−R′

n(h)| >
ϵ

2

)
= P

[
sup
h∈H
| 1
n

∑(
1{h(xi )̸=yi} − 1{h(x′

i )̸=y′i}

)
| > ϵ

2

]
(1.26)

Furthermore

P

[
sup
h∈H
| 1
n

∑
σi

(
1{h(xi )̸=yi} − 1{h(x′

i) ̸=y′i}

)
| > ϵ

2

]
≤ P

[
sup
h∈H
| 1
n

∑
σi1{h(xi )̸=yi}| >

ϵ

4
∪ sup

h∈H
| 1
n

∑
σi1{h(x′

i )̸=y′i}| >
ϵ

4

]
≤ 2P

[
sup
h∈H
| 1
n

∑
σi1{h(xi )̸=yi}| >

ϵ

4

] (1.27)
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Figure 1.3: S2 ∈ R2

where

σi =

−1 w.p.12

1 w.p.12

(1.28)

Conditioning on Sn

P

[
sup
h∈H
| 1
n

∑
σi1{h(xi )̸=yi}| >

ϵ

4

]
= E

[
P

[
sup
h∈H
| 1
n

∑
σi1{h(xi )̸=yi}| >

ϵ

4

]
|Sn

]
≤ ESn [2πH(Sn)] exp

−−2nϵ2

32

≤ 2πH(n) exp−
−2nϵ2

32

(1.29)

where

πH(n) = max
Sn

πH(Sn)

πH(n) =

2n N ≤ dV C

polynomial(n) n > dV C

(1.30)

why we need the σi random variable. It is the sub sample operation. Looking at the figure

1.6.2, intuition idea is if we have S3 ∈ R2 × R. Always we can find maximal possible

2n=3 hyperplanes to shattered the datapoints. That’s why the changing point of segment

function is dV C = xn
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1.7 VC dimension

Remark 3. dV C(H) =∞, learning may not be feasible

We introduce the steps to compute dV C(H)

1. Suppose K points ∃Sk such that πH(sk) = 2k. It could be shattered

2. Suppose dV C = k, ∀Sk+1 could not be shattered.

Example 4. Consider 3 points. If the 3 points samples as the triangle shape. It could

be shattered. Otherwise the 3 points are collinear which might be not shattered. However,

∀S4 ∈ R2 × R. Meanwhile, there are three different cases. the points are collinear, one

point is internal to the triangle and external to the triangle. The intuition of VC dimension

is we could find maximal dV C ≤ 2k hyperplanes to be shattered in Sk.

1.8 Sauer–Shelah Lemma

We will discuss

πH(n) =

dV C∑
i=0

(
n

i

)
, n ≥ dV C (1.31)

we can prove this formula by function B(n, k)

Definition 5. B(n,k)=number ways to label n points with k and a breakpoint



Chapter 2

Neural Network and Deep

Learning

2.1 Preliminaries

2.1.1 Hyperplane

The y = mx + c is one of definition of line. It will be limited in the further. We will

introduce another definition in the Rn. If one line pass the original point in the R2. The

function will be wTx = 0 ↔ w1x1 + w2x2 = 0. If the line do not pass the original point.

Then we will introduce the derivative. Function f : R→ R

f ′(x) = lim
h→0

[
f(x+ h)− f(x)

h

]
(2.1)

Then we want to approximate x linearly. We can show below equation by Taylor expansion

f(x+ h) = f(x) + hf ′(x) + o(h)

f(x+ h)− f(x)− hf ′(x) = o(h)

lim
h→0

f(x+ h)− f(x)− hf ′(x)

h
= 0

Thus

lim
h→0

||f(x+ h)− f(x)− hT ||
||h||

= 0 (2.2)

where T : Rn → R
m is total derivative

13
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Figure 2.1: Hyperplane

Example 6. Function f : Rn → R
m, the Tf will be

∂f1
∂x1

... ∂f1
∂xn

... ... ...
∂fm
∂x1

... ∂fm
∂xn


And the chain rules is the important in the machine learning.

f : R→ R, g : R→ R m(x) = f(g(x))

lim
h→0

m(x+ h)−m(x)

h
= f ′(g(x))g′(x)

(2.3)

we will extend the chain rule into f : Rn → R
k and g : Rm → R

n

Th(k×m)
= Tf(k×n)

Tg(n×m)
(2.4)

2.2 Feedforward Neural Network

We introduce feed-forward neural network. Here we consider the linear regression we have
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Figure 2.2: Hyperplane
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Sn = {(Xi, yi)}ni ∈ Rd ×R. w is the weight, b is the bias, and y is the label

p = wTx+ b

L =
1

n

∑
(wxi + b− yi)

2
(2.5)

And we will use the gradient descent to optimize the loss function

wnew = wold − η▽w L

bnew = bold − η▽b L
(2.6)

we will repeat till convergence (L does not change and be less than error). Regarding the

gradient descent, the batch and stochastic are two different variant. The stochastic gradient

descent is to random draw the subsample to compute the gradient from the original sample.

The batch gradient descent is to compute all gradient over the original sample. That’s the

basic idea of optimization method. However, it will trigger two question

• How to makes prediction?

• how to do gradient descent?

Figure 2.3: Linear Regression

We have

X =


x11 x12 ... x1d

x21 x22 ... x2d

...

xn1 xn2 ... xnd

 w =


w11

w21

...

wd1

 N =


N1

N2

...

Nn


The definition of N and α shows

N = Xw

α :Rn ×R→ R
n

(2.7)
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The structure of linear regression imply this

P =


N1 +B

N2 +B

...

Nn +B

 L =
n∑

i=1

(Pi − yi)
2 (2.8)

Then we can take the derivative to L over P

▽PL =
[

∂L
∂P1

∂L
∂P2

... ∂L
∂Pn

]
=

[
2(P1 − y1) 2(P2 − y2) ... 2(Pn − yn)

] (2.9)

This is the back propagation. And we apply the chain rule into the ▽PL

∂L

∂Ni
=

∂L

∂Pi

∂Pi

∂Ni

=
∂L

∂Pi
× 1

∂L

∂N
=

[
∂L
∂P1

∂L
∂P2

... ∂L
∂Pn

]
∂L

∂B
=

∑ ∂L

∂Pi

∂Pi

∂B
∂L

∂B
=

∑ ∂L

∂Pi

Then we need to consider two kinds of derivative ∂L
∂w and ∂L

∂x . we will introduce the function

n. We can get ∂L
∂x11

= ∂L
∂n11

∂n11
∂x11

+ ∂L
∂n12

∂n12
∂x11

2.3 Convollutional Neural Networks

It is very popular in the computer vision and image recognition. And we need to understand

the froward loss and backward loss. The common image is consist of the red green and blue,

three basic color. The size of image is m ∗ n ∗ 3 (think the RGB three channels). We will

introduce the window/filter A and trainiing sample x

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 x =


x11 x12 ... xm3

...

xm1 xm2 ... xmn


For the simplicity, each xij is the entry not the vector (ignore the RGB setting). The

modified matrix shows

B =
[∑i=3,j=3

i=0,j=0 ai,j ∗ xi,j
∑i=3,j=3

i=1,j=0 ai1,j ∗ xi,j ...
∑i=m,j=3

i=m,j=0 ai,j ∗ xi,j
]
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Figure 2.4: Conventional Process
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The conventional process could be visualized in the below figure. We simplify the conven-

tional process and introduce the underlying concept. Normally, we use 3 × 3 filter. And

the stride is the filter move distance. In this instance, stride equals 1. Then we will resize

the original image from m× n to m+2× n+2. Then we need do the flatten operations to

transform the matrix to vector. The next step is similar in the previous lecture, we can use

different neural network structure. All CNN contents is from this book Weidman (2019)
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