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Chapter 1

Introduction

1 Ref Chapters 1, 2.1-2, 6.1-2, 7.2, 11.3, 11.6

1.1 Introduction

In this section, we will give the belief introduction about the linear program and basic idea of

optimization. The detail you can check out in the textbook Luenberger et al. (1984)

min cTx

s.t. Ax = b

x ∈ K

(1.1)

This is the conic linear program depending on the set K

• linear program: when K is the non-negative orthant cone

• second order cone programming: when K is the second order cone

• semidefinite cone programming: when K is the semidefinite matrix cone

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1√
x22 + x23 ≤ x1

min 2x1 + x2 + x3

s.t. x1 + x2 + x3 = 1[
x1 x2

x2 x3

]
⪰ 0

(1.2)

They are LP, SOCP, and SDP respectively.

Definition 1.1. A symmetric matrix M with real entries is positive-definite if the real number

zTMz is positive for every nonzero real column vector z
1First Revision: TBC
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Figure 1.1: facility allocation

1.1.1 Facility Location Problem

Definition 1.2. For a real number p, the p-norm or Lp-norm of x is defined by

||x||p = (
∑
i

|xi|p)1/p

Consider this unconstrained optimization, and let cj be the location of client j = 1, 2, ...,m and

y be the location decision of a facility to be built. Then we solve

min
∑
j

||y − cj ||p (1.3)

In the sense, we will get the different optimal solution depending the value of p. The figure will

illustrate Obviously, the green lines represents the different norm p ∈ [1, 2]

1.1.2 Sparse Linear Regression Problems

Our target is to minimize the number of non-zero entries in x such that Ax = b

min ||x||0 = |{j : xj ̸= 0}|

s.t. Ax = b
(1.4)

Our target to minimize the number of zero in the vector or the rank in the matrix. And we use the

linear regression to illustrate the idea of LASSO

Example 1.3.

min
β0,β

{
N∑
i=1

(
yi − β0 − xTi β

)2}

s.t.

p∑
j=1

|βj | ≤ t

6



Here β0 is the constant coefficient, β := (β1, β2, . . . , βp) is the coefficient vector, and t is a prespecified

free parameter that determines the degree of regularization.

Letting X be the covariate matrix, so that Xij = (xi)j and xTi is the ith row of X, the expression

can be written more compactly as

min
β0,β

∥y − β0 −Xβ∥22

s, t, ∥β∥1 ≤ t

where ∥u∥p =
(∑N

i=1 |ui|
p
)1/p

is the standard ℓp norm.

Denoting the scalar mean of the data points xi by x̄ and the mean of the response variables yi by

ȳ, the resulting estimate for β0 is β̂0 = ȳ − x̄Tβ, so that

yi − β̂0 − xTi β = yi −
(
ȳ − x̄Tβ

)
− xTi β = (yi − ȳ)− (xi − x̄)T β

It can be helpful to rewrite

min
β∈Rp

1

N
∥y −Xβ∥22

s.t. ∥β∥1 ≤ t

in the so-called Lagrangian form

min
β∈Rµ

1

N
∥y −Xβ∥22 + λ∥β∥1 − λt

where the exact relationship between t and λ is data dependent.

Sometimes this objective can be accomplished by LASSO.

min ||x||1 =

n∑
i=1

|xj |

s.t. Ax = b

(1.5)

In this figure, we can illustrate why we could approximate the sparse problem by 1-norm. In the

two dim, the polyhedron will touch the vertex of the 1-norm. In the sense, the vertex will (1, 0) or

(0, 1). It will reduce the number of zero in the vector. Moreover, we also use the p-norm to solve

this problem

min ||Ax− b||2 + β(

n∑
j=1

|xj |p) (1.6)

Usually, we let p = 1
2 . Then we use the cross validation method to estimate β

1.1.3 Support Vector Machine

Denote ai ∈ Rd and bj ∈ Rd. We like to find a hyperplant, slope vector x and intersect scalar x0

s.t. aTi x+ x0+ ≥ 1,∀i

bT
j x+ x0 ≤ −1,∀j

(1.7)
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Figure 1.2: Approximation of Sparse Problem with 1-norm

This is a linear program with the null objective. Frequently we add the regularization term on the

slope vector

min β + µ∥x∥2

s.t. aTi x+ x0 + β ≥ 1,∀i

bT
j x+ x0 − β ≤ −1,∀j

β ≥ 0

(1.8)

The β is the error parameter. It is the relaxation method to compute the hyperplane. Moreover, we

can imagine the separating boundary is the ellipsoid. Let recall the college knowledge

x2

a2
+
y2

b2
≤ 1[

x y
] [ 1

a2 0

0 1
b2

][
x

y

]
≤ 1

Then we can have the ellipsoidal separation

min trace(X) + ∥x∥2

subject to aTi Xai + aTi x+ x0 ≥ 1,∀i

bT
j Xbj + bT

j x+ x0 ≤ −1,∀j

X ⪰ 0

(1.9)
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Figure 1.3: Sample

1.1.4 Transportation Problem

we consider the classic transportation problem. In the setting, there are seller and buyer, demand

and supply respectively.

min
∑m

i=1

∑n
j=1 cijxij

s.t.
∑n

j=1 xij = si,∀i = 1, . . . ,m∑m
i=1 xij = dj ,∀j = 1, . . . , n

xij ≥ 0,∀i, j.

(1.10)

The minimal transportation cost is called the Wasserstein Distance (WD) between supply distribu-

tion s and demand distribution d (can be interpreted as two probability distributions after normal-

ization). This is a linear program.

The Wasserstein Barycenter Problem is to find a distribution such that the sum of its Wasserstein

Distance to each of a set of distributions would be minimized. And you can check out this example

1.1.4 1.1.4 Ref Appendices A, B, and C, Chapter 1
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1.2 Optimization Application

1.2.1 Graph Realization and Sensor Network Localization

Given a graph G = (V,E) and sets of non–negative weights, say {dij : (i, j) ∈ E}, the goal is to

compute a realization of G in the Euclidean space Rd for a given low dimension d, where the distance

information is preserved

∥xi − xj∥2 = d2ij ,∀(i, j) ∈ Nx, i < j

∥ak − xj∥2 = d̂2kj ,∀(k, j) ∈ Na.
(1.11)

This is the quadratic optimization

min
xi∀i

∑
(i,j)∈Nx

(
∥xi − xj∥2 − d2ij

)2
+

∑
(k,j)∈Na

(
∥ak − xj∥2 − d̂2kj

)2
(1.12)

we have two directions to relax this problem: SOCP and SDP

1. change = to ≤

2. SDP relaxation

Let X = [x1x2...xn] be the d × n matrix that needs to be determined and ej be the vector of

all zero except 1 at the jth position. Then

∥xi − xj∥2 = (ei − ej)
T
XTX (ei − ej) (1.13)

∥ak − xj∥2 = (ak;−ej)T
[
I X

]T [
I X

]
(ak;−ej) =

(ak;−ej)T
(

I X

XT XTX

)
(ak;−ej) .

(1.14)

Convex relaxation first and steepest-descent-search second strategy

1.2.2 Markov Decision Process

• An MDP problem is defined by a given number of states, indexed by i, where each state has a

number of actions, Ai , to take. Each action, say j ∈ Ai , is associated with an (immeidiate)

cost cjof taking, and a probability distribution pj to transfer to all possible states at the next

time period

• A stationary policy for the decision maker is a function π = {π1, π2, ..., πm} that specifies an

action in each state,πi ∈ Ai , that the decision maker will take at any time period; which also

lead to a cost-to-go value for each state

• The MDP is to find a stationary policy to minimize/maximize the expected discounted sum

over the infinite horizon with a discount factor 0 ≤ γ ≤ 1

∞∑
t=0

γtE
[
cπit

(
it, it+1

)]
. (1.15)

10



• If the states are partitioned into two sets, one is to minimize and the other is to maximize the

discounted sum, then the process becomes a two-person turn-based zero-sum stochastic game

Ref Appendix B, Chapters 3.1-2, 6.1-6.4

1.3 Global and Local Optimizer

A global minimizer for (P) is a vector x⋆ such that

x∗ ∈ X and f (x∗) ≤ f(x) ∀x ∈ X (1.16)

Sometimes one has to settle for a local minimizer, that is, a vector x̄ such that

x ∈ X and f(x) ≤ f(x) ∀x ∈ X ∩N(x̄) (1.17)

where N(x̄) is a neighborhood of x̄. Typically, N(x̄) = Bδ(x̄), an open ball centered at x̄ having

suitably small radius δ > 0.

1.3.1 Size and Complexity of Problems

• number of decision variables

• number of constraints

• bit size/number required to store the problem input data (mean the memory consumption)

• problem difficulty or complexity number

• algorithm complexity or convergence speed

the definition of Lp norm is following

∥x∥p =

 n∑
j=1

|xj |p
1/p

(1.18)

For xk, x⋆ ∈ Rn and 0 < γ < 1 contraction sequence is∥∥xk+1 − x∗∥∥ ≤ γ ∥∥xk − x∗∥∥ ,∀k ≥ 0 (1.19)

inner product

A •B = trATB =
∑
i,j

aijbij (1.20)

The operator norm of matrix A

∥A∥2 := max
0̸=x∈Rn

∥Ax∥2

∥x∥2
(1.21)

The Frobenius norm of matrix A

∥A∥2f := A •A =
∑
i,j

a2ij (1.22)

11



Theorem 1.4. Perron-Frobenius Theorem: a real square matrix with positive entries has a unique

largest real eigenvalue and that the corresponding eigenvector can be chosen to have strictly positive

components.

Stochastic Matrices: A ≤ 0 with eTA = eT (Column-Stochastic), or Ae = e (Row-Stochastic), or

Doubly-Stochastic if both. It has a unique largest real eigenvalue 1 and corresponding non-negative

right or left eigenvector.

1.3.2 Affine Set

S ⊂ Rn is affine if

[x,y ∈ S and α ∈ R] =⇒ αx+ (1− α)y ∈ S (1.23)

When x and y are two distinct points in Rn and α runs over R,

{z : z = αx+ (1− α)y} (1.24)

is the affine combination of x and y. When 0 ≤ α ≤ 1, it is called the convex combination of x and

y. More points? For multipliers α ≥ 0 and for β ≥ 0

{z : z = αx+ βy}, (1.25)

is called the conic combination of x and y. It is called linear combination if both α and β are ”free”.

Convex Set

Ω is said to be a convex set if for every x1,x2 ∈ Ω and every real number α ∈ [0, 1], the point

αx1 + (1− α)x2 ∈ Ω

Ball and Ellipsoid: for given y ∈ Rn and positive definite matrixQ : E(y, Q) =
{
x : (x− y)TQ(x− y) ≤ 1

}
The intersection of convex sets is convex, the sum-set of convex sets is convex, the scaled-set of

a convext set is convex

The convex hull of a set Ω is the intersection of all convex sets containing Ω. Given column-points

of A, the convex hull is
{
z = Ax : eTx = 1,x ≥ 0

}
SVM Claim: two point sets are separable by a plane if any only if their convex hulls are separable.

An extreme point in a convex set is a point that cannot be expressed as a convex combination

of other two distinct points of the set

A set is polyhedral if it has finitely many extreme points; {x : Ax = b,x ≥ 0} and {x : Ax ≤ b}
are convex polyhedral.

The dual norm

C∗ := {y : x • y ≥ 0 for all x ∈ C} (1.26)

12



Theorem 1.5. The dual is always a closed convex cone, and the dual of the dual is the closure of

convex hall of C

Cone Example

Example 1.6. The n-dimensional non-negative orthant, Rn
+ = {x ∈ Rn : x ≥ 0}, is a convex cone.

Its dual is itself.

Example 1.7. The set of all PSD matrices in Sn,Sn+, is a convex cone, called the PSD matrix

cone. Its dual is itself.

Example 1.8. The set
{
(t;x) ∈ Rn+1 : t ≥ ∥x∥p

}
for p ≥ 1 is a convex cone in Rn+1, called the

p-order cone. Its dual is the q-order cone with 1
p + 1

q = 1.

The dual of the second-order cone (p = 2) is itself.

1.3.3 Convex Functions

f is a (strongly) convex function iff for 0 < α < 1,

f(αx+ (1− α)y)(<) ≤ αf(x) + (1− α)f(y) (1.27)

The sum of convex functions is a convex function; the max of convex functions is a convex function

The Composed function f(ϕ(x)) is convex if ϕ(x) is a convex and f(·) is convex&non-decreasing.

The (lower) level set of f is convex:

L(z) = {x : f(x) ≤ z} (1.28)

Convex set {(z;x) : f(x) ≤ z} is called the epigraph of f . tf(x/t) is a convex function of (t;x) for

t > 0 if f(·) is a convex function; it’s homogeneous with degree 1 Note that the difference between

supreme and maximization, the maximal solution is achievable and supreme is not.

We need to clarify the function tf(x/t). It is jointly convex function of (t;x). The jointly convex

will be

(αt1 + (1− α)t2) f(
αx1 + (1− α)x2

αt1 + (1− α)t2
) ≤ αt1f(

x1

t1
) + (1− α)t2f(

x2

t2
) (1.29)

The detail you can read chapter 2 of Boyd et al. (2004)

1.3.4 Convex Function Examples

∥x∥p for p ≥ 1 is convex because of the triangle inequality(norm property)

∥αx+ (1− α)y∥p ≤ ∥αx∥p + ∥(1− α)y∥p ≤ α∥x∥p + (1− α)∥y∥p, (1.30)
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Logistic function log
(
1 + ea

T

x+ b
)

is convex. Consider the minimal-objective function of b for

fixed A and c
z(b) := min cTx

s.t. Ax = b

x ≥ 0

(1.31)

Show that z(b) is a convex function in b.

Proof. There are two separated cases

z(b1) := min cTx1

s.t. Ax1 = b1

x1 ≥ 0

z(b2) := min cTx2

s.t. Ax2 = b2

x2 ≥ 0

(1.32)

we need to show

x = αx⋆
1 + (1− α) ∗ x⋆

2

is also the feasible solution and x⋆
1,x

⋆
2 are optimal solution of linear program respectively

z(αb1 + (1− α) ∗ b2) = min
x

cT (αx⋆
1 + (1− α) ∗ x⋆

2)

≤ cT (αx⋆
1 + (1− α) ∗ x⋆

2)

= αmin
x1

cTx1 + (1− α)min
x2

cTx2

We are also curious the minimal-objective function of c for fixed A and b

z(c) := min cTx

s.t. Ax = b

x ≥ 0

(1.33)

Proof. There are two separated cases

z(c1) := min cT1 x1

s.t. Ax1 = b

x1 ≥ 0

z(c2) := min cT2 x2

s.t. Ax2 = b

x2 ≥ 0

(1.34)

we have x is also feasible solution for two programming

min
x1

αcT1 x1 +min
x2

(1− α)cT2 x2 ≤ αcT1 x+ (1− α)cT2 x

= min
x

(
αcT1 + (1− α)cT2

)
x

Since we can always find optimal solution of
(
αcT1 + (1− α)cT2

)
x

Lemma 1.9. For an standard linear program, if we fix A and c, function z(b) is the convex function.

If we fix A and b, function z(c) is the concave function

14



1.4 Theorems on Functions

Theorem 1.10. Let f ∈ C1 be in a region containing the line segment [x,y]. Then there is a

α, 0 ≤ α ≤ 1, such that

f(y) = f(x) +∇f(αx+ (1− α)y)(y − x) (1.35)

Furthermore, if f ∈ C2 then there is a α, 0 ≤ α ≤ 1, such that

f(y) = f(x) +∇f(x)(y − x) + (1/2)(y − x)T∇2f(αx+ (1− α)y)(y − x) (1.36)

Theorem 1.11. Let f ∈ C1. Then f is convex over a convex set Ω if and only if

f(y) ≥ f(x) +∇f(x)(y − x) (1.37)

for all x, y ∈ Ω

Proof. (Boyd et al. (2004))Proof of first-order convexity condition To prove, we first consider the

case n = 1 : We show that a differentiable function f : R→ R is convex if and only if

f(y) ≥ f(x) + f ′(x)(y − x)

for all x and y in dom f . Assume first that f is convex and x, y ∈ dom f . Since dom f is convex

(i.e., an interval), we conclude that for all 0 < t ≤ 1, x+ t(y − x) ∈ dom f , and by convexity of f

f(x+ t(y − x)) ≤ (1− t)f(x) + tf(y).

If we divide both sides by t, we obtain

f(y) ≥ f(x) + f(x+ t(y − x))− f(x)
t

,

and taking the limit as t → 0 yields 4.25. To show sufficiency, assume the function satisfies 4.25

for all x and y in dom f (which is an interval). Choose any x ̸= y, and 0 ≤ θ ≤ 1, and let

z = θx+ (1− θ)y. Applying 4.25 twice yields

f(x) ≥ f(z) + f ′(z)(x− z), f(y) ≥ f(z) + f ′(z)(y − z).

Multiplying the first inequality by θ, the second by 1− θ, and adding them yields

θf(x) + (1− θ)f(y) ≥ f(z),

which proves that f is convex. Now we can prove the general case, with f : Rn → R. Let

x, y ∈ Rn and consider f restricted to the line passing through them, i.e., the function defined by

g(t) = f(ty + (1− t)x), so g′(t) = ∇f(ty + (1− t)x)T (y − x).

First assume f is convex, which implies g is convex, so by the argument above we have g(1) ≥
g(0) + g′(0), which means

f(y) ≥ f(x) +∇f(x)T (y − x).

15



Now assume that this inequality holds for any x and y, so if ty+(1− t)x ∈ dom f and t̃y+(1− t)x ∈
dom f , we have

f(ty + (1− t)x) ≥ f(t̃y + (1− t̃)x) +∇f(t̃y + (1− t̃)x)T (y − x)(t− t̃),

i.e., g(t) ≥ g(t̃) + g′(t̃)(t− t̃). We have seen that this implies that g is convex.

Theorem 1.12. Let f ∈ C2. Then f is convex over a convex set Ω if and only if the Hessian matrix

of f is positive semi-definite throughout Ω.

∇2f(x) ⪰ 0 (1.38)

1.4.1 Lipschitz Functions

The first-order β-Lipschitz function: there is a positive number β such that for any two points x

and y :

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥ (1.39)

This condition imples ∣∣f(x)− f(y)−∇f(y)T (x− y)
∣∣ ≤ β

2
∥x− y∥2 (1.40)

Proof. The key tool is Taylor’s formula with integral remainder

Let ∆ := y−x and ϕ(t) = f(x+ t∆) where t is a scalar variable. Then we have ϕ(0) = f(x) and

ϕ(1) = f(x+∆) = f(y). Moreover,

f(x+∆)− f(x) = ϕ(1)− ϕ(0) =
∫ 1

0

dϕ(t) =

∫ 1

0

∆T∇f(x+ t∆)dt

For the first implication inequality, noting ∆T∇f(x) =
∫ 1

0
∆T∇f(x)dt, we have

∣∣f(x+∆)− f(x)−∇f(x)T∆
∣∣ = ∣∣∣∣∫ 1

0

∆T (∇f(x+ t∆)−∇f(x))dt
∣∣∣∣

≤
∫ 1

0

∣∣∆T (∇f(x+ t∆)−∇f(x))
∣∣dt

≤
∫ 1

0

∥∆∥∥∇f(x+ t∆)−∇f(x)∥dt (Cauchy-Schwartz inequality)

= ∥∆∥
∫ 1

0

∥∇f(x+ t∆)−∇f(x)∥dt

≤ ∥∆∥
∫ 1

0

β∥t∆∥dt ( the first-order Lipschitz condition)

= ∥∆∥β∥∆∥
∫ 1

0

t dt =
β

2
∥∆∥2.
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The second-order β-Lipschitz function: there is a positive number β such that for any two points

x and y ∥∥∇f(x)−∇f(y)−∇2f(y)(x− y)
∥∥ ≤ β∥x− y∥2 (1.41)

This condition implies∣∣∣∣f(x)− f(y)−∇f(y)T (x− y)− 1

2
(x− y)T∇2f(y)(x− y)

∣∣∣∣ ≤ β

3
∥x− y∥3 (1.42)

Proof. Similar idea we use to prove the first order Lipschitz function

Let ∆ = x− y and ϕ(t) = f(y + t∆) where t is a scalar variable. Then we have ϕ(0) = f(y) and

ϕ(1) = (y +∆) = f(x). Moreover,

∇f(y +∆)−∇f(y) = ϕ(1)− ϕ(0) =
∫ 1

0

dϕ(t) =

∫ 1

0

∆T∇2f(x+ t∆)dt

For the first implication inequality, noting ∆T∇2f(x) =
∫ 1

0
∆T∇2f(x)dt and 1

2 (x−y)T∇2f(y)(x−
y) = ∆T∇2f(y)∆

∫ 1

0
tdt , we have∣∣∣∣f(y +∆)− f(y)−∇f(y)T∆− ∆T∇2f(y)∆

2

∣∣∣∣ = ∣∣∣∣∫ 1

0

∆T (∇f(x+ t∆)−∇f(x))dt
∣∣∣∣

≤
∫ 1

0

∣∣∆T (∇f(y + t∆)−∇f(y)− t∇2f(y)∆)
∣∣dt

≤
∫ 1

0

∥∆∥∥∇f(x+ t∆)−∇f(x)− t∇2f(y)∆∥dt

= ∥∆∥
∫ 1

0

∥∇f(x+ t∆)−∇f(x)− t∇2f(y∥dt

≤ ∥∆∥
∫ 1

0

β∥t∆∥2dt

= ∥∆∥β∥∆∥2
∫ 1

0

t dt2

=
β

3
∥∆∥3

1.4.2 Known Inequalities

• Cauchy-Schwarz: given x,y ∈ Rn,
∣∣xTy

∣∣ ≤ ∥x∥p∥y∥q, where 1
p + 1

q = 1 and p ≥ 1

• Triangle: given x,y ∈ Rn, ∥x+ y∥p ≤ ∥x∥p + ∥y∥p for p ≥ 1

• Arithmetic-geometric mean: given x ∈ Rn
+,∑
xj
n
≥
(∏

xj

)1/n
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1.4.3 Direct Solution

Given A ∈ Rm×n and c ∈ Rn

min
∥∥ATy − c

∥∥2
s.t. y ∈ Rm

(1.43)

Choleski Decomposition

AAT = LΛLT , and then solve LΛLTy = Ac.

Projections Matrices: AT
(
AAT

)−1
A and I −AT

(
AAT

)−1
A

1.5 Exercise

1. Given a symmetric matrix A ∈ Rn×n s.t. A has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, show that for

every k = 1, 2, · · · , n, we have:

λk = max
U

{
min
x

{
xTAx

xTx
| x ∈ U,x ̸= 0

}
| U is a linear subspace ofRnof dimension k}

= min
U

{
max
x

{
xTAx

xTx
| x ∈ U,x ̸= 0

}
| U is a linear subspace of Rn of dimension n− k + 1}

(1.44)

Solution: This result is known as the Courant-Fischer Minimax Theorem. See Theorem

8.1.2 of Golub and Van Loan (2013) for a sample proof

Here we sketch the proof for 4.25. Let {vk}nk=1 denote a set of orthonormal eigenbasis of A,

with Avk = λkvk. Moreover, A =
∑n

k=1 λkvkv
T
k .

When k = 1, the expression reduces to λ1 = maxx ̸=0
xTAx
xT x

, which is true for symmetric

matrices, with one maximizer U1 being spanned by v1.

Now suppose for the sake of induction that we have shown (1) for some k and that the

maximizer Uk can be taken to be the span of the first k eigenvectors, and we need to show it

holds for k + 1 We show that a maximizer for λk+1 is Uk+1 := Uk ∪ span (vk+1). To see this,

note that

λk+1 = min
x∈Uk+1

xTAx

xTx

so that λk+1 ≤ RHS of (1). On the other hand, for any subspace U of dimension k + 1

that is not spanned by the first k + 1 eigenvectors of A, minimization in RHS will choose an

eigenvector corresponding to an eigenvalue smaller than λk+1. □

2. Given symmetric matrices A,B,C ∈ Rn×n s.t. A has eigenvalues a1 ≥ a2 ≥ · · · ≥ an, B has

eigenvalues b1 ≥ b2 ≥ · · · ≥ bn and C has eigenvalues c1 ≥ c2 ≥ · · · ≥ cn, if A = B + C, show

that for every k = 1, 2, · · · , n, we have:

bk + cn ≤ ak ≤ bk + c1
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Solution: We show that ak ≤ bk + c1. The other inequality is similar. According to (1),

define Uk to be the dim- k linear subspace such that

ak = min
x

{
xTAx

xTx
| x ∈ Uk,x ̸= 0

}
and let x∗ be the minimizer of minx

{
xTBx
xTx

| x ∈ Uk,x ̸= 0
}
. It follows that

ak = min
x

{
xT (B + C)x

xTx
| x ∈ Uk,x ̸= 0

}
≤ x∗T (B + C)x∗

x∗Tx∗

≤ min
x

{
xTBx

xTx
| x ∈ Uk,x ̸= 0

}
+max

x

{
xTCx

xTx
| x ∈ Rn,x ̸= 0

}
≤ max

U

{
min
x

{
xTBx

xTx
| x ∈ U,x ̸= 0

}
| dim(U) = k

}
+max

x

{
xTCx

xTx
| x ∈ Rn,x ̸= 0

}
= bk + c1,

completing the proof. Similarly, According to 4.25, define Uk to be the (n−k+1)-dimensional

linear subspace such that

ak = max
x

{
xTAx

xTx
| x ∈ Uk,x ̸= 0

}
and let x∗ be the maximizer of maxx

{
xTBx
xTx

| x ∈ Uk,x ̸= 0
}
. It follows that

ak = max
x

{
xT (B + C)x

xTx
| x ∈ Uk,x ̸= 0

}
≥ x∗T (B + C)x∗

x∗Tx∗

≥ max
x

{
xTBx

xTx
| x ∈ Uk,x ̸= 0

}
+min

x

{
xTCx

xTx
| x ∈ Rn,x ̸= 0

}
≥ min

U

{
max
x

{
xTBx

xTx
| x ∈ U,x ̸= 0

}
| dim(U) = n− k + 1

}
+min

x

{
xTCx

xTx
| x ∈ Rn,x ̸= 0

}
= bk + cn

□
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Chapter 2

Duality

Ref Chapters 3.1-3.2 and 6.1-6.4

2.1 Basic Feasible Solution and Farkas Lemma

2.1.1 Caratheodory’s theorem

Theorem 2.1. Given matrix A ∈ Rm×n, let convex polyhedral cone C = {Ax : x ≥ 0}. For any

b ∈ C

b =

d∑
i=1

ajixji , xji ≥ 0,∀i (2.1)

for some linearly independent vectors aj1 , . . . ,ajd chosen from a1, . . . ,an. There is a construct proof

of the theorem (page 26 of the Luenberger et al. (1984)).

2.1.2 Basic Feasible Solution

Now consider the feasible set {x : Ax = b,x ≥ 0} for given data A ∈ Rm×n and b ∈ Rm. Select

m linearly independent columns, denoted by the variable index set B, from A. Solve ABxB = b

for the m-dimension vector xB , and set the remaining variables, xN , to zero. Then, we obtain a

solution x such that Ax = b, that is called a basic solution to with respect to the basis AB . If a

basic solution xB ≥ 0, then x is called a basic feasible solution, or BFS.

Note that the the optimal solution is the extreme point. We show the proof of this argument

below
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Proof.

min cTx

s.t. x ∈ X
(2.2)

Let ẋ ∈ int X. Thus we have {x : ||x− ẋ||2 ≤ r} ∈ X. Imply

x = ẋ− r c

||c||2
cTx = cT (ẋ− r c

||c||2
)

= cT ẋ− r||c||

< cT ẋ

Theorem 2.2. (Separating hyperplane theorem) Let C be a closed convex set in Rm and let b be a

point exterior to C. Then there is a vector y ∈ Rm such that

b · y > sup
x∈C

x · y. (2.3)

Theorem 2.3. (Supporting hyperplane theorem) Let C be a closed convex set and let b be a point

on the boundary of C. Then there is a vector y ∈ Rm such that

b · y = sup
x∈C

x · y. (2.4)

2.1.3 Farkas Lemma

Theorem 2.4. Let A ∈ Rm×n and b ∈ Rm. Then, the system {x : Ax = b, x ≥ 0} has a feasible

solution x if and only if that its alternative system −ATy ≥ 0 and bTy > 0 has no feasible solution

y.

Geometrically, Farkas’ lemma means that if a vector b ∈ Rm does not belong to the convex cone

generated by a.1, . . . ,a.n, then there is a hyperplane separating b from cone (a.1, . . . ,a.n).

Proof. Let {x : Ax = b,x ≥ 0} have a feasible solution, say x. Then,
{
y : ATy ≤ 0,bTy > 0

}
is

infeasible, since otherwise,

0 < bTy = (Ax)Ty = xT
(
ATy

)
≤ 0

from x ≥ 0 and ATy ≤ 0 Now let {x : Ax = b,x ≥ 0} have no feasible solution, or b /∈ C := {Ax :

x ≥ 0}. We now prove that its alternative system has a solution. We first prove

Lemma 2.5. C = {Ax : x ≥ 0} is a closed convex set.
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That is, any convergent sequence bk ∈ C, k = 1.2 . . . has its limit point b also in C. Let

bk = Axk,xk ≥ 0. Then by Carathéodory’s theorem, we must have bk = ABkxBk ,xBk ≥ 0 where

ABk is a basis of A. Therefore, xBk , together with zero values for the nonbasic variables, is bounded

for all k, so that it has sub-sequence, say indexed by l = 1, . . ., where xl = xBl has a limit point x

and x ≥ 0. Consider this very sub-sequence bl = Axl we must also have bl → b. Then from

∥b−Ax∥ =
∥∥b− bl +Axl −Ax

∥∥ ≤ ∥∥b− bl
∥∥+ ∥∥Axl −Ax

∥∥ ≤ ∥∥b− bl
∥∥+ ∥A∥ ∥∥xl − x

∥∥
we must have b = Ax, that is, b ∈ C; since otherwise the right-hand side of the above inequality

is strictly greater than zero which is a contradiction. Now since C is a closed convex set, by the

separating hyperplane theorem, there is y such that

y · b > sup
c∈C

y • c

or

y • b > sup
x≥0

y • (Ax) = sup
x≥0

ATy • x (2.5)

From 0 ∈ C we have y • > 0. Furthermore, ATy ≤ 0. Since otherwise, say
(
ATy

)
1
> 0, one can

have a vector x ≥ 0 such that x̄1 = α > 0, x̄2 = . . . = x̄n = 0, from which

sup
x≥0

ATy • x ≥ ATy • x =
(
ATy

)
1
· α

and it tends to∞ as α→∞. This is a contradiction because supx≥0A
Ty•x is bounded from above

by (5).

Farkas Lemma Variant

Theorem 2.6. Let A ∈ Rm×n and c ∈ Rn. Then, the system
{
y : c−ATy ≥ 0

}
has a solution y

if and only if that Ax = 0, x ≥ 0, and cTx < 0 has no feasible solution x.

Consider the pair:

{x : Ax = b, x ∈ K}

and {
y : −ATy ∈ K∗, bTy > 0

}
.

Or in operator form: given data vector or matrix ai, i = 1, . . . ,m, and b ∈ Rm, an ”alternative”

system pair would be

Ax = b, x ∈ K

and

−ATy ∈ K∗, bTy = 1(> 0)

where

Ax = (a1 • x; . . . ;am • x) ∈ Rm and ATy =

m∑
i

yiai
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Let K be a closed and convex cone in the rest of the course. If there is y such that −ATy ∈ intK∗,

then C := {Ax : x ∈ K} is a closed convex cone. Consequently,

Ax = b, x ∈ K

and

−ATy ∈ K∗, bTy = 1(> 0)

are an alternative system pair. And if there is x such that ATx = 0,x ∈ int K, then

Ax = 0, x ∈ K, c • x = −1(< 0)

and

c−ATy ∈ K∗

are an alternative system pair.

2.2 Conic Linear Program

(C L P)min c • x

s.t. ai • x = bi, i = 1, 2, . . . ,m,x ∈ K,(
ATx = b

) (2.6)

where K is a closed and pointed convex cone. Linear Programming (LP): c,ai,x ∈ Rn and K =

Rn
+ Second-Order Cone Programming (SOCP): c,ai,x ∈ Rn and K = SOC = {x : x1 ≥ ∥x−1∥2}.

Semidefinite Programming (SDP): c,ai,x ∈ Sn and K = Sn+ p-Order Cone Programming (POCP):

c,ai,x ∈ Rn and K = POC =
{
x : x1 ≥ ∥x−1∥p

}
. Here, x−1 is the vector (x2; . . . ;xn) ∈ Rn−1.

Cone K can be also a product of different cones, that is, x = (x1;x2; . . .) where x1 ∈ K1,x2 ∈ K2, . . .

and so on with linear constraints:

A1x1 +A2x2 + . . . = b

2.2.1 Dual of Conic Linear Program

The dual problem to

(CLP )min c • x

s.t. ai • x = bi, i = 1, 2, . . . ,m,x ∈ K
(2.7)

is
(CLD) min bTy

s.t.
∑m

i yiai + s = c, s ∈ K∗,
(2.8)

where y ∈ Rm, s is called the dual slack vector/matrix, and K∗ is the dual cone of K. The former

is called the primal problem, and the latter is called dual problem.

Ref Chapters 3.1-2, 6.4-5
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2.3 Duality of Conic Linear Program

Recall the primal and dual program

min CTx

s.t. Ax = b

x ∈ K

max bT y

s.t. Ay + s = c

s ∈ K ′

(2.9)

Theorem 2.7. (Weak duality theorem) cTx − bTy = xT s ≥ 0 for any feasible x of (CLP ) and

(y, s) of (CLD)

Corollary 2.8. Let x∗ ∈ Fp and (y∗, s∗) ∈ Fd. Then, c •x∗ = bTy∗ implies that x∗ is optimal for

(CLP ) and (y∗, s∗) is optimal for (CLD)

It is called the strong duality theorem, but it does not work in general. Here, operator Ax
and Adjoint-Operator ATy minimic matrix-vector production Ax and its transpose operation ATy,

where

A = (a1;a2; . . . ;am) , Ax = (a1 • x; . . . ;am • x) , and ATy =
∑
i

yia
T
i (2.10)

Theorem 2.9. The following statements hold for every pair of (LP ) and (LD) :

• If (LP ) and (LD) are both feasible, then both problems have optimal solutions and the optimal

objective values of the objective functions are equal, that is, optimal solutions for both (LP)

and (LD) exist and there is no duality gap

• If (LP ) or (LD) is feasible and bounded, then the other is feasible and bounded

• If (LP ) or (LD) is feasible and unbounded, then the other has no feasible solution

• If (LP ) or (LD) is infeasible, then the other is either unbounded or has no feasible solution

2.3.1 Farkas Lemma and Duality

The Farkas lemma concerns the system the system {x : Ax = b, x ≥ 0} and its alternative{
y : −ATy ≥ 0,bTy > 0

}
for given data (A,b). This pair can be represented as a primal-dual

LP pair

min 0Tx max bTy

s. t. Ax = b, s.t. ATy ≤ 0

x ≥ 0;

(2.11)

If the primal is infeasible, then the dual must be feasible and unbounded since it is always feasible.
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2.3.2 Optimality Conditions for LP
CTx− bT y = 0

(x, y, s) ∈ (Rn
+,Rm,Rn

+) Ax = b

AT y + s = c

(2.12)

which is a system of linear inequalities and equations. Now it is easy to verify whether or not a pair

(x, y, s) is optimal.

2.3.3 Complementarity Condition

For feasible x and (y, s),xT s = xT
(
c−ATy

)
= cTx − bTy is called the complementarity gap. If

xTS = 0, then we say x and s are complementary to each other. Since both x and s are nonnegative,

xT s = 0 implies that x. ∗ s = 0 or xjsj = 0 for all j = 1, . . . , n.

x · ∗ = 0

Ax = b

−ATy − s = −c.

(2.13)

This system has total 2n + m unknowns and 2n + m equations including n nonlinear equations.

Interpretation of sj = 0 : the j th inequality constraint of the dual is ”binding” or ”active”.

2.3.4 Duality of Conic Program

Example 2.10. The strong duality theorem may not hold for general convex cones:

c =

 0 1 0

1 0 0

0 0 0

 ,a1 =

 0 0 0

0 1 0

0 0 0

 ,a2 =

 0 −1 0

−1 0 0

0 0 2


and

b =

(
0

2

)
The problem is

min x1 + x2

s.t.

[
x2

x1 + x2

]
=

[
0

−2

]
[
x1 x2

x2 x3

]
⪰ 0

max y2

s.t.

 0 −y2 0

−y2 y1 0

0 0 0

+ s =

0 1 0

1 0 0

0 0 0


s ⪰ 0

Theorem 2.11. The following statements hold for every pair of (CLP ) and (CLD):
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• If (CLP ) and (CLD) both are feasible, and furthermore one of them have an interior, then

there is no duality gap between (CLP) and (CLD). However, one of the optimal solution may

not be attainable.

• If (CLP) and (CLD) both are feasible and have interior, then, then both have attainable optimal

solutions with no duality gap.

• If (CLP ) or (CLD) is feasible and unbounded, then the other has no feasible solution.

• If (CLP ) or (CLD) is infeasible, and furthermore the other is feasible and has an interior,

then the other is unbounded.

Construct the Dual Cone

Consider set

{(τ, x) : τ > 0, τci(x/τ) ≤ 0}

The dual cone is the set of all points (κ; s) such that

κτ + sTx ≥ 0, ∀(τ ;x) s.t.τ > 0, τci(x/τ) ≤ 0, i = 1, ...,m

Without loss of generality, we can set τ = 1 and the condition becomes

κ+ sTx ≥ 0, ∀x s.t.ci(x) ≤ 0, i = 1, ...,m

Then, consider the optimization problem

ψ(s) : = inf sTx

s.t. ci(x) ≤ 0, i = 1, 2, ...,m

Then, the dual cone coan be represented as

K⋆ = {(κ, s) : κ+ ψ(x) ≥ 0}

2.4 Combinationrial Auction Pricing

Given the m different states that are mutually exclusive and exactly one of them will be true at the

maturity. A contract on a state is a paper agreement so that on maturity it is worth a notional $1
if it is on the winning state and worth $0 if is not on the winning state. There are n orders betting
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on one or a combination of states, with a price limit and a quantity limit

Order: #1 #2 #3 #4 #5

Argentina 1 0 1 1 0

Brazil 1 0 0 1 1

Italy 1 0 1 1 0

Germany 0 1 0 1 1

France 0 0 1 0 0

Bidding Prize: π 0.75 0.35 0.4 0.95 0.75

Quantity limit:q 10 5 10 10 5

Order fill:x x1 x2 x3 x4 x5

Lethal xj be the number of contacts awarded to the jth order. Then jth better will pay the amount

πj × xj

and the total collected amount is
∑n

i=1 πj × xj = πTx. If the ith state is the winning state, then

the auction organizer need to pay.
n∑

j=1

aijxj

We can formulate the primal and dual problem

max πTx− z

s.t. Ax− e · z ≤ 0

x ≤ q

x ≥ 0

min qTy

s.t. ATp+ y ≥ π,

eTp = 1,

(p,y) ≥ 0.

(2.14)

2.4.1 Online Linear Programming

The main idea of linear program is we don’t know the coefficient matrix. We need to make the

decision and reveal the information sequentially.

max

n∑
t=1

πtxt

s.t.

n∑
t=1

aitxt ≤ bi, ∀i = 1, . . . ,m

0 ≤ xt ≤ 1, ∀t = 1, . . . , n

(2.15)

Each bid/activity t requests a bundle of m resources, and the payment is πt. Online Decision

Making: we only know (n,b) at the start, but - the (bounded) order-data of each variable xt is

revealed sequentially. - an irrevocable decision must be made as soon as an order arrives without

observing or knowing the future data.
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The algorithm/mechanism quality is evaluated on the expected performance over all the permu-

tations comparing to the offline optimal solution, i.e., an algorithm A is c-competitive if and only

if

Eσ

[
n∑

t=1

πtxt(σ,A)

]
≥ c ·OPT (A, π),∀(A, π). (2.16)

Then we will introduce the algorithm how to solve the online linear program.

1. Set xt = 0 for all 1 ≤ t ≤ ϵn

2. Solve the ϵ portion of the problem

maximize x

∑ϵn
t=1 πtxt

subject to
∑ϵn

t=1 aitxt ≤ ϵbi i = 1, . . . ,m

0 ≤ xt ≤ 1 t = 1, . . . , ϵn

and get the optimal dual solution p̂ of the sample LP;

3. Determine the future allocation xt as:

xt =

0 if πt ≤ p̂Tat

1 if πt > p̂Tat

as long as aitxt ≤ bi−
∑t−1

j=1 aijxj for all i; otherwise, set xt = 0. Online Learning: Periodically

resolve the sample LP with all arrived orders and update the ”ideal” prices...
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Chapter 3

Optimality Conditions and KKT

Condition

Ref Chapters 7.1-7.3, 11.1-11.8

3.1 Optimality Conditions

Recall the primal and dual program(x,y, s) ∈
(
Rn

+,Rm,Rn
+

)
:

cTx− bTy = 0

Ax = b

−ATy − s = −c

 (3.1)

Let x⋆ and s⋆ be optimal solutions with zero duality gap

|support(x⋆)|+ |support(s⋆)| ≤ n (3.2)

Note that support size means the number of non-zero components. Then we will have

Theorem 3.1. If (LP ) and (LD) are both feasible, then there exists a pair of strictly complementary

solutions x∗ ∈ Fp and (y∗, s∗) ∈ Fd such that

x∗ · s∗ = 0 and |supp (x∗)|+ |supp (s∗)| = n. (3.3)

Moreover, the supports

P ∗ =
{
j : x∗j > 0

}
and Z∗ =

{
j : s∗j > 0

}
are invariant for all strictly complementary solution pairs.
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3.1.1 Uniqueness Theorem for Linear Program

If we have the optimal solution x⋆ and how to clarify the uniqueness of x⋆

Theorem 3.2. An LP optimal solution x∗ is unique if and only if the size of supp (x∗) is maximal

among all optimal solutions and the columns of ASupp (x
∗) are linear independent.

Proof. It is easy to see both conditions are necessary, since otherwise, one can find an optimal solution

with a different support size. To see sufficiency, suppose there there is another optimal solution y∗

such that x∗ − y∗ ̸= 0. We must have supp (y∗) ⊂ supp (x∗), since, otherwise, (0.5x∗ + 0.5y∗)

remains optimal and its support size is greater than that of x∗ which is a contradiction. Then we

see

0 = Ax∗ −Ay∗ = A (x∗ − y∗) = Asupp(x∗) (x
∗ − y∗) supp (x∗)

which implies that columns of ASupp(x∗) are linearly dependent. Think the x⋆ =


0

1

1

1

 and y⋆ =


1

1

0

0



3.1.2 Uniqueness Theorem for Semidefinite Program

Theorem 3.3. An SDP optimal and complementary solution X∗ is unique if and only if the rank of

X∗ is maximal among all optimal solutions and V ∗Ai (V
∗)

T
, i = 1, . . . ,m, are linearly independent,

where X∗ = (V ∗)
T
V ∗, V ∗ ∈ Rr×n, and r is the rank of X∗.

3.2 Relaxation Example

3.2.1 Sensor Localization Problem

Given ak ∈ Rd, dij ∈ Nx, and d̂kj ∈ Na, find xi ∈ Rd such that

∥xi − xj∥2 = d2ij ,∀(i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d̂2kj ,∀(k, j) ∈ Na,

30



We can transform to the matrix form and SDP relaxation

(ei − ej)
T
Y (ei − ej) = d2ij ,∀i, j ∈ Nx, i < j

(ak;−ej)T
(

I X

XT Y

)
(ak;−ej) = d̂2kj ,∀k, j ∈ Na(

I X

XT Y

)
⪰ 0

(3.4)

Theorem 3.4. Let Z̄ be a feasible solution for SDP and Ū be an optimal slack matrix of the dual.

Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0

2. Rank(Z̄) + Rank(Ū) ≤ 2 + n

3. Rank(Z̄) ≥ 2 and Rank(Ū) ≤ n

3.3 Rank-Reduction for SDP

In the most SDP case, it is difficult to find the rank-minimal SDP solution

(SDP ) min C •X
subject to Ai •X = bi, i = 1, 2, . . . ,m,X ⪰ 0

(3.5)

where C,Ai ∈ Sn

Theorem 3.5. (Carathéodory’s theorem)

• If there is a minimizer for (LP ), then there is a minimizer of (LP ) whose support size r

satisfying r ≤ m

• If there is a minimizer for (SDP), then there is a minimizer of (SDP) whose rank r satisfying
r(r+1)

2 ≤ m. Moreover, such a solution can be find in polynomial time.

Then if we simply the SDP feasiblility problem

Ai •X = bi i = 1, ..,m, X ⪰ 0

we try to find an approximate X̂ ⪰ 0 of rank at most d

β(m,n, d) · bi ≤ Ai • X̂ ≤ α(m,n, d) · bi ∀i = 1, . . . ,m (3.6)

Here, α ≥ 1 and β ∈ (0, 1] are called the distortion factors. Clearly, the closer are both to 1 , the

better.
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Theorem 3.6. Let r = max {rank (Ai)} and X̄ be a feasible solution. Then, for any d ≥ 1, the

randomly generated

X̂ =

d∑
i

ξiξ
T
i , ξi ∈ N

(
0,

1

d
X̄

)

α(m,n, d) =

1 + 12 ln(4mr)
d for 1 ≤ d ≤ 12 ln(4mr)

1 +
√

12 ln(4mr)
d for d > 12 ln(4mr)

and

β(m,n, d) =


1

e(2m)2/d
for 1 ≤ d ≤ 4 ln(2m)

max

{
1

e(2m)2/d
, 1−

√
4 ln(2m)

d

}
for d > 4 ln(2m)

Here is the some remarks from theorem 9

• There is always a low-rank, or sparse, approximate SDP solution with respect to a bounded

relative residual distortion. As the allowable rank increases, the distortion bounds become

smaller and smaller.

• The lower distortion factor is independent of n and the rank of Ai s.

• The factors can be improved if we only consider one-sided inequalities.

• This result contains as special cases several well-known results in the literature.

• Can the distortion upper bound be improved such that it’s independent of rank of Ai ?

• Is there deterministic rank-reduction procedure? Choose the largest d eigenvalue component

of X ?

• General symmetric Ai ?

• In practical applications, we see much smaller distortion, why?

3.4 Max-Cut Problem

This is the Max-Cut problem on an undirected graph G = (V,E) with non-negative weights wij for

each edge in E (and wij = 0 if (i, j) /∈ E ), which is the problem of partitioning the nodes of V into

two sets S and V \S so that

w(S) :=
∑

i∈S,j∈V \S

wij

is maximized. A problem of this type arises from many network planning, circuit design, and

scheduling applications.

w∗ := Maximize w(x) :=
1

4

∑
i,j

wij (1− xixj)

s.t. (xj)
2
= 1, j = 1, . . . , n

(3.7)
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Then we do the semidefinite relaxation reformulation. Let Zij = xixj

zSDP := Maximize
1

4

∑
i,j

wij (1− Zij)

Subject to Zii = 1, i = 1, . . . , n

Z ⪰ 0, rank(Z) = 1

(3.8)

If we remove the rank-one constraint, it will be SDP relaxation problem

Theorem 3.7. (Goemans and Williamson)

E[w(x̂)] ≥ .878zSDP ≥ .878w∗ (3.9)

Ref Chapters 11.7-8, 14.1-2

3.5 Optimality Conditions for Nonlinear Optimization

3.5.1 KKT Optimality Condition

A differentiable function f of one variable defined on an interval F = [ae]. If an interior-point x̄

is a local/global minimizer, then f ′(x̄) = 0; if the left-end-point x̄ = a is a local minimizer, then

f ′(a) ≥ 0; if the right-end-point x̄ = e is a local minimizer, then f ′(e) ≤ 0. first-order necessary con-

dition (FONC) summarizes the three cases by a unified set of optimality/complementarity slackness

conditions

If f ′(x̄) = 0, then it is also necessary that f(x) is locally convex at x̄ for it being a local minimizer.

How to tell the function is locally convex at the solution? It is necessary f ′′(x̄) ≥ 0, which is called

the second-order necessary condition (SONC), which we would explored further.

These conditions are still not, in general, sufficient. It does not distinguish between local mini-

mizers, local maximizers, or saddle points.

If the second-order sufficient condition (SOSC): f ′′(x̄) > 0, is satisfied or the function is strictly

locally convex, then x̄ is a local minimizer. Thus, if the function is convex everywhere, the first-order

necessary condition is already sufficient.

Then we want to explore the second order optimality under unconstrained optimization.

Theorem 3.8. (First-Order Necessary Condition) Let f(x) be a C1 function where x ∈ Rn. Then,

if x is a minimizer, it is necessarily ∇f(x) = 0.

Theorem 3.9. (Second-Order Necessary Condition) Let f(x) be a C2 function where x ∈ Rn.

Then, if x is a minimizer, it is necessarily

∇f(x) = 0 and ∇2f(x) ⪰ 0.

Note that the Hessian matrix is the semidefinite
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Furthermore, if ∇2f(x) ≻ 0, then the condition becomes sufficient. The proofs would be based

on 2nd-order Taylor’s expansion at x

Proof. we have the second order Taylor’s expansion

f(x) = f(x̄) + (x− x̄)T ▽ f(x̄) + (x− x̄)T ▽2 f(x̄)(x− x̄) + o(||x− x̄||2)

If ▽f(x̄) = 0 and ▽2f(x̄) = 0, the x̄ is not the local optimal.

Such that if these conditions are not satisfied, then one would be find a descent-direction d and

a small constant ᾱ > 0 such that f(x+ αd) < f(x),∀0 < α ≤ ᾱ

For example, if ∇f(x) = 0 and ∇2f(x) ⪰̸ 0, the eigenvector of a negative eigenvalue of the

Hessian would be a descent direction from x. Again, they may still not be sufficient, e.g., f(x) = x3.

3.5.2 Descent Direction

Let f be a differentiable function on Rn. If point x ∈ Rn and there exists a vector d such that

∇f(x)d < 0

then there exists a scalar τ̄ > 0 such that

f(x+ τd) < f(x) for all τ ∈ (0, τ̄).

Note that ∃τ, f(x+τd)−f(x)
τd d < 0

The vector d (above) is called a descent direction at x. If ∇f(x) ̸= 0, then ∇f(x) is the direction
of steepest ascent and −∇f(x) is the direction of steepest descent at x. Denote by Dd

x the set of

descent directions at x, that is,

Dd
x = {d ∈ Rn : ∇f(x)d < 0}

At feasible point X, a feasible direction is

Df
x := {d ∈ Rn : d ̸= 0,x+ λd ∈ F for all small λ > 0} .

3.5.3 Optimality Condition of Problem

Roughly the optimality condition of unconstrained problem is

Theorem 3.10. Let x be a (local) minimizer of (UP). If the functions f is continuously differentiable

at x, then

∇f(x) = 0.

This condition is also sufficient for global optimality if f is a convex function.

34



Consider the linear equality-constrained problem, where f is differentiable on Rn,

(LEP) min f(x)

s.t. Ax = b.

Theorem 3.11. (the Lagrange Theorem) Let x be a (local) minimizer of (LEP). If the functions f

is continuously differentiable at x, then

∇f(x) = yTA

for some y = (ȳ1; . . . ; ȳm) ∈ Rm, which are called Lagrange or dual multipliers. This condition is

also sufficient for global optimality if f is a convex function.

The Lagrange formula is

L(x, y) = f(x) + yT b− yTAx

Then take the derivative

▽L(x̄, y) = ▽f(x̄)− ȳTA = 0

The geometric interpretation: the objective gradient vector is perpendicular to or the objective level

set tangents the constraint hyperplanes. Let v(b) be the minimal value function of b of (LEP).

Simliarly

▽L(b) = ȳ = 0

Proof. Consider feasible direction space

F = {x : Ax = b} ⇒ Df
x = {d : A d = 0}

If x is a local optimizer, then the intersection of the descent and feasible direction sets at x̄ must be

empty or

Ad = 0,∇f(x)d ̸= 0

has no feasible solution for d. By the Alternative System Theorem it must be true that its alternative

system has a solution, that is, there is ȳ ∈ Rn such that

∇f(x) = yTA =

m∑
i=1

ȳiAi

3.5.4 Barrier Optimization

Consider the problem

min −
∑n

j=1 log xj

s.t. Ax = b

x ≥ 0

(3.10)
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The non-negativity constraint can be removed if the feasible region has an ”interior”, that is, there

is a feasible solution such that x > 0. Thus, if a minimizer x exists, then x > 0 and

−eT X̄−1 = yTA =

m∑
i=1

ȳiAi.

3.6 KKT Condition

Let us now consider the inequality-constrained problem

min f(x)

s.t. Ax ≥ b.

Theorem 3.12. (the KKT Theorem) Let x be a (local) minimizer of (LIP). If the functions f is

continuously differentiable at x, then

∇f(x) = yTA,y ≥ 0

for some y = (ȳ1; . . . ; ȳm) ∈ Rm, which are called Lagrange or dual multipliers, and ȳi = 0, if

i /∈ A(x). These conditions are also sufficient for global optimality if f is a convex function.

Then we can have the KKT constraint. We now consider optimality conditions for problems

having both inequality and equality constraints. These can be denoted

min f(x)

s.t. aix (≤,=,≥) bi, i = 1, . . . ,m,

For any feasible point x̄ of (P) we have the sets

A(x) = {i : aix = bi}

Dd
x = {d : ∇f(x)d < 0}

Theorem 3.13. Let x be a local minimizer for (P ). Then there exist multipliers y such that

aix (≤,=,≥) bi, i = 1, . . . ,m,

(Original Problem Constraints (OPC))

∇f(x) = yTA

( Lagrangian Multiplier Conditions (LMC))

ȳi
(
≤,′ free ′,≥

)
0, i = 1, . . . ,m,

Multiplier Sign Constraints (MSC)

ȳi = 0 if i /∈ A(x)
(Complementarity Slackness Conditions (CSC)).

(3.11)

These conditions are also sufficient for global optimality if f is a convex function.

And we will emphasize again to sufficient and necessary the convexity. Like f(x) = x3
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• Hessian matrix is PSD in the feasible region

• Epigraph is a convex set

3.6.1 LCOP Examples: Linear Optimization

(LP ) min cTx

s.t.Ax = b,x ≥ 0

s

For any feasible x of (LP), it’s optimal if for some y,

xjsj = 0,∀j = 1, . . . , n

Ax = b

∇
(
cTx

)
= cT = yTA+ sT

x, s ≥ 0.

Here, y (shadow prices in LP) are Lagrange or dual multipliers of equality constraints, and s (reduced

gradient/costs in LP) are Lagrange or dual multipliers for x ≥ 0.

3.6.2 LCOP Examples : Quadratic Optimization

(QP ) min xTQx− 2cTx

s.t. Ax = b,x ≥ 0

Optimality Conditions:

xjsj = 0,∀j = 1, . . . , n

Ax = b

2Qx− 2c−ATy − s = 0

x, s ≥ 0

3.6.3 LCOP Examples: Linear Barrier Optimization

min f(x) = cTx− µ
n∑

j=1

log (xj) , s.t. Ax = b,x ≥ 0

for some fixed µ > 0. Assume that interior of the feasible region is not empty:

Ax = b

cj −
µ

xj
−
(
yTA

)
j
= 0,∀j = 1, . . . , n

x > 0.
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Let sj =
µ
xj

for all j (note that this s is not the s in the KKT condition of f(x) ). Then

xjsj = µ,∀j = 1, . . . , n,

Ax = b,

ATy + s = c,

(x, s) > 0.

3.7 Inverse Optimization

We know that the KKT theorem could be applied into the equilibrium, and the dual variable reflects

the econ perproties. We can explore which are we can use the KKT theorem, such as the inverse

optimization. This area is introduced by Ahuja and Orlin (2001). In this paper, we study inverse

optimization problems defined as follows. Let S denote the set of feasible solutions of an optimization

problem P, let c be a specified cost vector, and x0 be a given feasible solution. The solution x0 may

or may not be an optimal solution of P with respect to the cost vector c. The inverse optimization

problem is to perturb the cost vector c to d so that x0 is an optimal solution of P with respect to

d and ∥d − c∥p is minimum, where ∥d − c∥p is some selected Lp norm. In this paper, we consider

the inverse linear programming problem under L1 norm (where ∥d − c∥p =
∑

i∈J wj |dj − cj |, with
J denoting the index set of variables xj and wj denoting the weight of the variable j ) and under

L∞ norm (where ∥d− c∥p = maxj∈J {wj |dj − cj |} ). We prove the following results:

1. If the problem P is a linear programming problem, then its inverse problem under the L1 as

well as L∞ norm is also a linear programming problem.

2. If the problem P is a shortest path, assignment or minimum cut problem, then its inverse

problem under the L1 norm and unit weights can be solved by solving a problem of the same

kind. For the nonunit weight case, the inverse problem reduces to solving a minimum cost flow

problem.

3. If the problem P is a minimum cost flow problem, then its inverse problem under the L1

norm and unit weights reduces to solving a unit-capacity minimum cost flow problem. For the

nonunit weight case, the inverse problem reduces to solving a minimum cost flow problem.

4. If the problem P is a minimum cost flow problem, then its inverse problem under the L∞ norm

and unit weights reduces to solving a minimum mean cycle problem. For the nonunit weight

case, the inverse problem reduces to solving a minimum cost-to-time ratio cycle problem.

5. If the problem P is polynomially solvable for linear cost functions, then inverse versions of P

under the L1 and L∞ norms are also polynomially solvable.

Ref Chapters 7.6-7, and 8.1-5
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3.8 General Constrained Optimization

We show the example of general constrained optimization

(GCO) min f(x)

s.t. h(x) = 0 ∈ Rm

c(x) ≥ 0 ∈ Rp

(3.12)

We establish to optimality condition to verify the local minimizer or an KKT solution. Consider the

intersection of hypersurfaces

{x ∈ Rn : h(x) = 0 ∈ Rm,m ≤ n}

when function hi(x) are differentiable, we say the surface is smooth.

Definition 3.14. A point x∗ satisfying the constraint h (x∗) = 0 is said to be a regular point of the

constraint if the gradient vectors ∇h1 (x∗) ,∇h2 (x∗) , . . . ,∇hm (x∗) are linearly independent.

Based on the Implicit Function Theorem (Appendix A of the Text), if x is a regular point and

m < n, then for every d ∈ Tx = {z : ∇h(x)z = 0} there exists a curve x(t) on the hypersurface,

parametrized by a scalar t in a sufficiently small interval
[
−a a

]
, such that

h(x(t)) = 0, x(0) = x, ẋ(0) = d.

Tx is called the tangent-space or tangent-plane of the constraints at x.

Lemma 3.15. Let x be a feasible solution and a regular point of the hypersurface of

{x : h(x) = 0, ci(x) = 0, i ∈ Ax}

where active-constraint set Ax = {i : ci(x) = 0}. If x is a (local) minimizer of (GCO), then there

must be no d to satisfy linear constraints:

∇f(x)d < 0

∇h(x)d = 0 ∈ Rm

∇ci(x)d ≥ 0,∀i ∈ Ax.

(3.13)

3.8.1 First-Order Necessary Conditions

(First-Order or KKT Optimality Condition) Let x be a (local) minimizer of (GCO) and it is a regular

point of {x : h(x) = 0, ci(x) = 0, i ∈ Ax}. Then, for some multipliers (y, s ≥ 0)

∇f(x) = yT∇h(x) + sT∇c(x)

and (complementarity slackness)

s̄ici(x) = 0,∀i
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The proof is again based on the Alternative System Theory or Farkas Lemma. The complementarity

slackness condition is from that ci(x) = 0 for all i ∈ Ax, and for i /∈ Ax, we simply set s̄i = 0.

A solution who satisfies these conditions is called an KKT point or solution of (GCO) - any local

minimizer x, if it is also a regular point, must be an KKT solution; but the reverse may not be true.

3.8.2 KKT via the Lagrangian Function

It is more convenient to introduce the Lagrangian Function associated with generally constrained

optimization:

L(x,y, s) = f(x)− yTh(x)− sT c(x) (3.14)

where multipliers y of the equality constraints are ”free” and s ≥ 0 for the ”greater or equal to”

inequality constraints, so that the KKT condition (2) can be written as

∇xL(x,y, s) = 0 (3.15)

We now consider optimality conditions for problems having three types of inequalities:

(GCO) min f(x)

s.t. ci(x) (≤,=,≥) 0, i = 1, . . . ,m, (Original Problem Constraints (OPC))

For any feasible point x of (GCO) define the active constraint set by Ax = {i : ci(x) = 0}. Let x be

a local minimizer for (GCO) and x is a regular point on the hypersurface of the active constraints

Then there exist multipliers y such that The complete First-Order KKT Conditions consist of these

four parts!

Example 3.16. Given ak ∈ R2 and Euclidean distances dk, k = 1, 2, 3, find x ∈ R2 such that

minx 0Tx,

s.t. ∥x− ak∥2 − d2k ≤ 0, k = 1, 2, 3,

L(x,y) = 0Tx−
∑3

k=1 yk

(
∥x− ak∥2 − d2k

)
,

0 =
∑3

k=1 yk (x− ak) (LDC)

yk ≤ 0, k = 1, 2, 3, (MSC)

yk

(
∥x− ak∥2 − d2k

)
= 0. (CSC).

Then we talk about the Arrow-Debreu’s exchange market.

Example 3.17. (Arrow-Debreu’s exchange market)

max uT
i xi

s.t. pTxi ≤ pTwi,

xij ≥ 0, ∀j,
(3.16)

take the dual

min λip
Twi

s.t. λip ≥ ui

λi ≥ 0

(3.17)
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Since we hold the weak duality theorem λip
Twi ≥ uT

i xi. The setting indicate that the term are

non-negative.

λip
Twi ≥ uT

i xi

1

λi
≤ pTwi

uT
i xi

pj ≥ uij
pTwi

uT
i xi

We want to find the equilibrium. The necessary and sufficient equilibrium conditions of the Arrow-

Debreu market are
pj ≥ uij · p

Twi

uT
i xi
· ∀i, j∑

i xij =
∑

i wij ∀j,
pj > 0,xi ≥ 0, ∀i, j

(3.18)

The first inequality is nonlinear

pj ∗ pTwi ≥ uijuT
i xi ≥ 0

log (pj ∗ pTwi) ≥ log (uiju
T
i xi)

log (pj) + log (pTwi)− log (uT
i xi) ≥ log (uij)

Let yj = log (pj) or pj = expyj . Note that left term is concave in xi and yj

yj + log (
∑
j

expyj wij)− log (uT
i xi) ≥ log (uij) (3.19)

They are different utility function in the exchange markets, such as

Cobb-Douglas utility:

ui(xi) =
∏
j

x
uij

ij

Leontief utility:

ui(xi) = min
j

{
xij
uij

, xij ≥ 0

}
If we use the above utility and do the linear algebra steps, we can also show KKT solution suffices.

3.9 Second Order Sufficient Condition

Next we discuss the second order sufficient condition. We assume the function are twice continuously

differentiable. Recall the tangent linear subspace at x̄

Tx̄ = {z : h(x)z = 0,∇ci(x)z = 0,∀i ∈ Ax}

Theorem 3.18. Let x be a (local) minimizer of (GCO) and a regular point of hypersurface {x : h(x) = 0, ci(x) = 0, i ∈ Ax},
and let y, s denote Lagrange multipliers such that (x,y, s) satisfies the (first-order) KKT conditions

of (GCO ). Then, it is necessary to have

dT∇2
xL(x,y, s)d ≥ 0 ∀d ∈ Tx. (3.20)
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The Hessian of the Lagrangian function need to be positive semidefinite on the tangent-space.

The details of this theorem could be checked out in the textbook Luenberger et al. (1984)

Proof. The proof reduces to one-dimensional case by considering the objective function ϕ(t) =

f(x(t)) for the feasible curve x(t) on the surface of ALL active constraints. Since 0 is a (local)

minimizer of ϕ(t) in an interval [−aa] for a sufficiently small a > 0, we must have ϕ′(0) = 0 so that

0 ≤ ϕ′′(t)|t=0 = ẋ(0)T∇2f(x)ẋ(0) +∇f(x)ẍ(0) = dT∇2f(x)d+∇f(x)ẍ(0).

Let all active constraints (including the equality ones) be h(x) = 0 and differentiating equations

ȳTh(x(t)) =
∑

i ȳihi(x(t)) = 0 twice, we obtain

0 = ẋ(0)T

[∑
i

ȳi∇2hi(x)

]
ẋ(0) + ȳT∇h(x)ẍ(0) = dT

[∑
i

ȳi∇2hi(x)

]
d+ ȳT∇h(x)ẍ(0).

Let the second expression subtracted from the first one on both sides and use the FONC:

0 ≤ dT∇2f(x)d− dT

[∑
i

ȳi∇2hi(x)

]
d+∇f(x)ẍ(0)− ȳT∇h(x)ẍ(0)

= dT∇2f(x)d− dT

[∑
i

ȳi∇2hi(x)

]
d

= dT∇2
xL(x,y, s)d

Note that this inequality holds for every d ∈ Tx.

Furthermore we could show similar theorem

Theorem 3.19. Let x be a regular point of (GCO) with equality constraints only and let y be the

Lagrange multipliers such that (x,y) satisfies the (first-order) KKT conditions of (GCO). Then, if

in addition

dT∇2
xL(x,y)d > 0 ∀0 ̸= d ∈ Tx, (3.21)

then x is a local minimizer of (GCO).

The simple example illustrates the regular points and KKT points.

Example 3.20.

min (x1)
2
+ (x2)

2
s.t. (x1)

2
/4 + (x2)

2 − 1 = 0

L (x1, x2, y) = (x1)
2
+ (x2)

2 − y
(
− (x1)

2
/4− (x2)

2
+ 1
)

∇xL (x1, x2, y) = (2x1(1 + y/4), 2x2(1 + y))

∇2
xL (x1, x2, y) =

(
2(1 + y/4) 0

0 2(1 + y)

)
Tx := {(z1, z2) : (x1/4) z1 + x2z2 = 0}
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We see that there are two possible values for y : either −4 or −1, which lead to total four KKT

points:  x1

x2

y

 =

 2

0

−4

 ,

 −20
−4

 ,

 0

1

−1

 , and

 0

−1
−1


Consider the first KKT point:

∇2
xL(2, 0,−4) =

(
0 0

0 −6

)
, Tx = {(z1, z2) : z1 = 0}

Then the Hessian is not positive semidefinite on Tx since

dT∇2
xL(2, 0,−4)d = −6d22 ≤ 0.

Consider the third KKT point:

∇2
xL(0, 1,−1) =

(
3/2 0

0 0

)
, Tx = {(z1, z2) : z2 = 0}

Then the Hessian is positive definite on Tx since

dT∇2
xL(0, 0,−1)d = (3/2)d21 > 0,∀0 ̸= d ∈ Tx.

This would be sufficient for the third KKT solution to be a local minimizer.

We also try to apply the KKT condition on the noncovex problem, like spherical constrained

nonconvex quadratic optimization

(SCQP ) min xTQx+ cTx

s.t. ∥x∥2(≤,=)1
(3.22)

Here we can also relax the norm constraint to the SDP. And have rank 1 solution

Theorem 3.21. The FONC and SONC, that is, the following conditions on x, together with the

multiplier y,

∥x∥2 (≤,=) 1, (OPC)

2Qx+ c− 2yx = 0, (LDC)

y
(
≤, free ′) 0, (MSC)

y
(
1− ∥x∥2

)
= 1, (CSC)

(Q− yI) ⪰ 0, (SOC)

are necessary and sufficient for finding the global minimizer of (SCQP).

3.10 Lagrangian Duality Theory

A bullet point is the conic duality form is the subset of Lagrangian duality. Recall the dual of conic

linear program

(CLP ) min c • x

s.t. ai • x = bi, i = 1, 2, . . . ,m,x ∈ K;

43



and it dual problem

(CLD) max bTy

s.t.

m∑
i

yiai + s = c, s ∈ K∗,

where y ∈ Rm, s is called the dual slack vector/matrix, and K∗ is the dual cone of K. In general,

K can be decomposed to K = K1 ⊕K2 ⊕ . . .⊕Kp, that is,

x = (x1;x2; . . . ;xp) ,xi ∈ Ki,∀i

Note that K∗ = K∗
1 ⊕K∗

2 ⊕ . . .⊕K∗
p , or

s = (s1; s2; . . . ; sp) , si ∈ K∗
i ,∀i.

This is a powerful but very structured duality form. We now develop the Lagrangian Duality theory

as an alternative to Conic Duality theory. For general nonlinear constraints, the Lagrangian Duality

theory is more applicable.

We explain the Lagrangian duality idea by toy example

min (x1 − 1)
2
+ (x2 − 1)

2

s.t. x1 + 2x2 − 1 ≤ 0

2x1 + x2 − 1 ≤ 0

L(x,y) = f(x)− yT c(x) = f(x)−
2∑

i=1

yici(x) =

= (x1 − 1)
2
+ (x2 − 1)

2 − y1 (x1 + 2x2 − 1)− y2 (2x1 + x2 − 1) , (y1; y2) ≤ 0

where

∇Lx(x,y) =

(
2 (x1 − 1)− y1 − 2y2

2 (x2 − 1)− 2y1 − y2

)
For given multipliers y ∈ Y , consider problem

(LRP ) inf L(x,y) = f(x)− yT c(x)

s.t. x ∈ Rn

Again, yi can be viewed as a penalty parameter to penalize constraint violation ci(x), i = 1, . . . ,m.

In the toy example, for given (y1; y2) ≤ 0, the LRP is:

inf (x1 − 1)
2
+ (x2 − 1)

2 − y1 (x1 + 2x2 − 1)− y2 (2x1 + x2 − 1)

s.t. (x1;x2) ∈ R2, let above infimum formula equal 0, and it has a close form solution x for any

given y :

x1 =
y1 + 2y2

2
+ 1 and x2 =

2y1 + y2
2

+ 1

with the minimal or infimum value function = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2. Note that the

difference between minimum and infimum, the minimal solution is achievable but infimum is not.
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For any y ∈ Y , the minimal value function (including unbounded from below or infeasible cases)

and the Lagrangian Dual Problem (LDP) are given by:

ϕ(y) := infx L(x,y), s.t. x ∈ Rn

(LDP ) supy ϕ(y), s.t. y ∈ Y

Theorem 3.22. The Lagrangian dual objective ϕ(y) is a concave function

Proof. For any given two multiply vectors y1 ∈ Y and y2 ∈ Y ,

ϕ
(
αy1 + (1− α)y2

)
= inf

x
L
(
x, αy1 + (1− α)y2

)
= inf

x

[
f(x)−

(
αy1 + (1− α)y2

)T
c(x)

]
= inf

x

[
αf(x) + (1− α)f(x)− α

(
y1
)T

c(x)− (1− α)
(
y2
)T

c(x)
]

= inf
x

[
αL
(
x,y1

)
+ (1− α)L

(
x,y2

)]
≥ α

[
inf
x
L
(
x,y1

)]
+ (1− α)

[
inf
x
L
(
x,y2

)]
= αϕ

(
y1
)
+ (1− α)ϕ

(
y2
)

Intuition, we have the weakly duality

Theorem 3.23. (Weak duality theorem) For every y ∈ Y , the Lagrangian dual function ϕ(y) is less

or equal to the infimum value of the original GCO problem.

Proof.

ϕ(y) = inf
x

{
f(x)− yT c(x)

}
≤ inf

x

{
f(x)− yT c(x) s.t. c(x)(≤,=,≥)0

}
≤ inf

x
{f(x) : s.t. c(x)(≤,=,≥)0}

The first inequality is from the fact that the unconstrained inf-value is no greater than the constrained

one. The second inequality is from c(x)(≤,=,≥)0 and y (≤ ′ free,≥)0 imply −yT c(x) ≤ 0

In the toy example. we will have

min (x1 − 1)
2
+ (x2 − 1)

2

s.t. x1 + 2x2 − 1 ≤ 0

2x1 + x2 − 1 ≤ 0

where x∗ =
(
1
3 ;

1
3

)
. The Lagrangian formula is

ϕ(y) = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2,y ≤ 0
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The dual program is

max − 1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2

s.t. (y1; y2) ≤ 0

where y∗ =
(−4

9 ; −4
9

)
.

3.10.1 Example of Program

Example of Dual Linear Program

Consider LP problem

(LP ) min cTx

s.t. Ax = b

x ≥ 0

and its conic dual problem is given by

(LD) max bTy

s.t. ATy + s = c

s ≥ 0

We now derive the Lagrangian Dual of (LP). Let the Lagrangian multipliers be y( ’free’) for

equalities and s ≥ 0 for constraints x ≥ 0. Then the Lagrangian function would be

L(x,y, s) = cTx− yT (Ax− b)− sTx =
(
c−ATy − s

)T
x+ bTy

where x is ”free”.

Now consider the Lagrangian dual objective

ϕ(y, s) = inf
x∈Rn

L(x,y, s) = inf
x∈Rn

[(
c−ATy − s

)T
x+ bTy

]
.

If
(
c−ATy − s

)
̸= 0, then ϕ(y, s) = −∞. Thus, in order to maximize ϕ(y, s), the dual must

choose its variables (y, s ≥ 0) such that
(
c−ATy − s

)
= 0. This constraint, together with the sign

constraint s ≥ 0, establish the Lagrangian dual problem:

(LDP ) max bTy

s.t. ATy + s = c, s ≥ 0.

which is consistent with the conic dual of LP.
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Example of Dual Linear Program with Log-Barrier

For a fixed µ > 0, consider the problem

min cTx− µ
∑n

j=1 log (xj)

s.t. Ax = b

x ≥ 0

Again, the non-negativity constraints can be ”ignored” if the feasible region has an ”interior”, that

is, any minimizer must have x(µ) > 0. Thus, the Lagrangian function would be simply given by

L(x,y) = cTx− µ
n∑

j=1

log (xj)− yT (Ax− b) =
(
c−ATy

)T
x− µ

n∑
j=1

log (xj) + bTy

Then, the Lagrangian dual objective (we implicitly need x > 0 for the function to be defined)

ϕ(y) := inf
x
L(x,y) = inf

x

(c−ATy
)T

x− µ
n∑

j=1

log (xj) + bTy

 .
First, from the view point of the dual, the dual needs to choose y such that c − ATy > 0, since

otherwise the primal can choose x > 0 to make ϕ(y) go to −∞. Now for any given y such that

c − ATy > 0, the inf problem has a unique finite close-form minimizer x by first order derivative

equaling zero

xj =
µ

(c−ATy)j
,∀j = 1, . . . , n.

Thus,

ϕ(y) = bTy + µ

n∑
j=1

log
(
c−ATy

)
j
+ nµ(1− log(µ))

Therefore, the dual problem, for any fixed µ, can be written as

max
y

ϕ(y) = nµ(1− log(µ)) + max
y

bTy + µ

n∑
j=1

log
(
c−ATy

)
j


This is actually the LP dual with the Log-Barrier on dual inequality constraints c−ATy ≥ 0.

Example of Dual Linear Program with Fisher Market

max
∑

i∈B wi log
(
uT
i xi

)
s.t.

∑
i∈B xi = b, ∀j ∈ G
xij ≥ 0, ∀i, j

The Lagrangian function would be simply given by

L (xi ≥ 0, i ∈ B,y) =
∑
i∈B

wi log
(
uT
i xi

)
− yT

(∑
i∈B

xi − b

)
=
∑
i∈B

(
wi log

(
uT
i xi

)
− yTxi

)
+ bTy
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Then, the Lagrangian dual objective, for any given y > 0, would be

ϕ(y) := inf
xi≥0,i∈B

L (xi, i ∈ B,y) = inf
xi≥0,i∈B

∑
i∈B

(
wi log

(
uT
i xi

)
− yTxi

)
+ bTy

Similar idea we use in the linear program with barrier function. For each i ∈ B, the sup-solution is

xij∗ =
wi

yj∗
> 0, j∗ = argmin

j

yj
uij

, xij = 0∀j ̸= j∗.

Thus,

ϕ(y) = bTy −
∑
i∈B

wi log

(
min
j

[
yj
uij

])
+
∑
i∈B

wi (log (wi)− 1) .

3.10.2 Lagrangian Strong Duality Theorem

Theorem 3.24. Theorem 3 Let (GCO) be a convex minimization problem and the infimum f∗ of

(GCO) be finite, and the suprermum of (LDP) be ϕ∗. In addition, let (GCO) have an interior-point

feasible solution with respect to inequality constraints, that is, there is x̂ such that all inequality

constraints are strictly held. Then, f∗ = ϕ∗, and (LDP ) admits a maximizer y∗ such that

ϕ (y∗) = f∗.

Furthermore, if (GCO) admits a minimizer x∗, then

y∗i ci (x
∗) = 0,∀i = 1, . . . ,m.

The assumption of “interior-point feasible solution” is called Constraint Qualification condition,

which was also needed as a condition to prove the strong duality theorem for general Conic Linear

Optimization.

Proof. Consider the convex set

C := {(κ; s) : ∃x s.t. f(x) ≤ κ,−c(x) ≤ s}.

Then, (f∗; 0) is on the closure of C. From the supporting hyperplane theorem, there exists (y∗0 ;y
∗) ̸=

0 such that

y∗0f
∗ ≤ inf

(κ;s)∈C

(
y∗0κ+ (y∗)

T
s
)

First, we show y∗ ≥ 0, since otherwise one can choose some (0; s ≥ 0) such that the inequality

is violated. Secondly, we show y∗0 > 0, since otherwise one can choose (κ → ∞; 0) if y∗ < 0, or

(0; s = −c(x̂) < 0) if y∗ = 0 (then y∗ ̸= 0), such that the above inequality is violated. Now let us

divide both sides by y∗0 and let y∗ := y∗/y∗0 , we have

f∗ ≤ inf
(κ;s)∈C

(
κ+ (y∗)

T
s
)
= inf

x

(
f(x)− (y∗)

T
c(x)

)
= ϕ (y∗) ≤ ϕ∗.

Then, from the weak duality theorem, we must have f∗ = ϕ∗
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If (GCO) admits a minimizer x∗, then f (x∗) = f∗ so that

f (x∗) ≤ inf
x

[
f(x)− (y∗)

T
c(x)

]
≤ f (x∗)− (y∗)

T
c (x∗) = f (x∗)−

m∑
i

y∗i ci (x
∗) ,

which implies that
m∑
i

y∗i ci (x
∗) ≤ 0.

Since y∗i ≥ 0 and ci (x
∗) ≥ 0 for all i, it must be true y∗i ci (x

∗) = 0 for all i.

Theorem 3.25. The Lagrangian dual function ϕ(y) is a concave function

The proof of theorem is 3.10

3.10.3 Support Vector Machine

The primal formulation is

min
x,x0,β

β + µ∥x∥2

s.t. aTi x+ x0 + β ≥ 1,∀i, (ya ≥ 0)

− bT
j x− x0 + β ≥ 1,∀j, (yb ≥ 0)

β ≥ 0.(α ≥ 0)

(3.23)

The Lagrangian formula is

L (x, x0, β,ya,yb, α) = β + µ∥x∥2 − yT
a

(
ATx+ x0e+ βe− e

)
− yT

b

(
−BTx− x0e+ βe− e

)
− αβ

First order derivative condition

∇xL(·) = 2µx−Aya +Byb = 0, ( replace x)

∇x0
L(·) = −eTya + eTyb = 0, (dual constraint)

∇βL(·) = 1− eTya − eTyb − α = 0.(dual constraint)

(3.24)

Then the dual objective is
−1
4µ
∥Aya −Byb∥2 + eTya + eTyb

In the dual side, we can understand the support vector machine. The fundamentation is to separate

two sets.

In addition, some problem could not be straight-ward. We cannot use the linear algebra or

first order derivative to substitute. The dual formulation structure depends different kind of primal

problem. Sometimes the dual can be constructed by simple reasoning: consider

(LP ) min cTx

s.t. Ax = b,−e ≤ x ≤ e

(∥x∥∞ ≤ 1)
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Let the Lagrangian multipliers be y for equality constraints. Then the Lagrangian dual objective

would be

ϕ(y) = inf
−e≤x≤e

L(x,y) = inf
−e≤x≤e

[(
c−ATy

)T
x+ bTy

]
where if

(
c−ATy

)
j
≤ 0, xj = 1; and otherwise, xj = −1.

Therefore, the Lagrangian dual is

(LDP ) max bTy −
∥∥c−ATy

∥∥
1

s.t. y ∈ Rm

3.10.4 Farkas Lemma for Nonlinear Constraints

Consider the convex constrained system:

(CCS) min 0Tx

s.t. ci(x) ≥ 0, i = 1, . . . ,m,

where ci(.) are concave functions and the Lagrangian Function is given by

L(x,y) = −yT c(x) = −
m∑
i=1

yici(x),y ≥ 0

Again, let

ϕ(y) := inf
x
L(x,y).

Theorem 3.26. If there exists y ≥ 0 such that ϕ(y) > 0, then (CSS) is infeasible. The proof is

directly from the dual objective function ϕ(y) is a homogeneous function and the dual has its objective

value unbounded from above.

3.10.5 The Conic Duality vs. Lagrangian Duality

Consider SOCP problem

(SOCP ) min cTx

s.t. Ax = b

x1 − ∥x−1∥2 ≥ 0

(3.25)

and it conic dual problem

(SOCD) max bTy

s.t. ATy + s = c

s1 − ∥s−1∥2 ≥ 0

(3.26)

Let the Lagrangian multipliers be y for equalities and scalar s ≥ 0 for the single constraint x1 ≥
∥x−1∥2. Then the Lagrangian function would be

L(x,y, s) = cTx− yT (Ax− b)− s (x1 − ∥x−1∥2) =
(
c−ATy

)T
x− s (x1 − ∥x−1∥2) + bTy
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Now consider the Lagrangian dual objective

ϕ(y, s) = inf
x∈Rn

L(x,y, s) = inf
x∈Rn

[(
c−ATy

)T
x− s (x1 − ∥x−1∥2) + bTy

]
.

The objective function of the problem may not be differentiable so that the classical optimal condition

theory do not apply. Consequently, it is difficult to write a clean/explicit form of the Lagrangian

dual problem.

On the other hand, many nonlinear optimization problems, even they are convex, are difficult to

transform them into structured CLP problems (especially to construct the dual cones). Therefore,

each of the duality form, Conic or Lagrangian, has its own pros and cons.

3.11 Conic Duality

This section heavily from this course webpage. We will discuss the conic duality. The bullet points

is when we deal with the conic program, 99% first step to try the conic duality.

The conic optimization problem in standard equality form is:

p⋆ := min
x

: cTx : Ax = b, x ∈ K

where cal K is a proper cone, for example a direct product of cones that are one of the three types:

positive orthant, second-order cone, or semidefinite cone. Let cal K⋆ be the cone dual cal K, which

we define as (K⋆ = {λ : ∀x ∈ K, λTx ≥ 0}. ) All cones we mentioned (positive orthant, second-order

cone, or semidefinite cone, and products thereof), are self-dual, in the sense that K⋆ = K.

The Lagrangian of the problem is given by

K⋆(x, λ, y) = cTx+ yT (b−Ax)− λTx

The last term is added to take account of the constraint x ∈ Kx in cal K. From the very definition

of the dual cone:

maxλ∈K⋆ −λTx =

0 ifx ∈ K

+∞ otherwise

Thus, we have

p⋆ = minx maxy,λ∈K⋆ L(x, λ, y)
= minx maxy,λ∈K⋆ cTx+ yT (b−Ax)− λTx
≥ d⋆ := maxy,λ∈K⋆ g(λ, y)

where

g(λ, y) = min
x
cTx+ yT (b−Ax)− λTx =

yT b ifc−AT y − λ = 0

−∞ otherwise

The dual for the problem is:

d⋆ = max yT b : c−AT y − λ = 0, λ ∈ K⋆
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Eliminating λ, we can simplify the dual as

d⋆ = max yT b : c−AT y ∈ K⋆

Note that dual cone K⋆ = {y :< x, y >≥ 0, x ∈ K}

3.11.1 Strong duality and KKT conditions

Conditions for Strong Duality

We now summarize the results stated before. Strong duality holds when either:

• The primal is strictly feasible, i.e. ∃x : Ax = b, x ∈ int(K). This also implies that the dual

problem is attained

• The dual is strictly feasible, i.e. ∃y : c − AT y ∈ int (K∗). This also implies that the primal

problem is attained. item If both the primal and dual are strictly feasible then both are

attained (and p∗ = d∗ )

KKT Conditions

Assume p∗ = d∗ and both the primal and dual are attained by some primal-dual triplet (x∗, λ∗, y∗)

. Then,

p∗ = cTx∗ = d∗ = g (λ∗, y∗)

= min
x
L (x, λ∗, y∗)

≤ L (x∗, λ∗, y∗)

= cTx∗ − λ∗Tx∗ + y∗T (b−Ax∗)

≤ cTx∗ = p∗

The last term in the fourth line is equal to zero which implies λ∗Tx∗ = 0. Thus the KKT conditions

are:

1. x ∈ K, Ax = b

2. λ ∈ K∗

3. λTx = 0

4. c−AT y − λ = 0, that is, ∇xL(x, λ, y) = 0

Eliminating λ from the above allows us to get rid of the Lagrangian stationarity condition, and gives

us the following theorem.
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Theorem 3.27. The conic problem

p∗ := min
x
cTx : Ax = b, x ∈ K.

admits the dual bound p∗ ≥ d∗, where

d∗ = max yT b : c−AT y ∈ K∗.

If both problems are strictly feasible, then the duality gap is zero: p∗ = d∗, and both values are

attained. Then, a pair (x, y) is primal-dual optimal if and only if the KKT conditions

• Primal feasibility: x ∈ K, Ax = b

• Dual feasibility: c−AT y ∈ K∗

• Complementary slackness:
(
c−AT y

)T
x = 0, hold

3.11.2 SDP Duality

In this section, we consider the SDP in standard form:

p∗ := max
X
⟨C,X⟩

s.t. ⟨Ai, X⟩ = bi, i = 1, . . . ,m

X ⪰ 0

(3.27)

where C,Ai are given symmetric matrices, ⟨A,B⟩ = Tr(AB) denotes the scalar product between

two symmetric matrices, and b ∈ Rm is given. Note that

tr(A)
∑
i

aii

Conic Lagrangian

Consider the ”conic” Lagrangian

L(X, ν, Y ) := ⟨C,X⟩+
m∑
i=1

νi (bi − ⟨Ai, X⟩) + ⟨Y,X⟩,

where now we associate a matrix dual variable Y to the constraint X ⪰ 0. Let us check that the

Lagrangian above ”works”, in the sense that we can represent the constrained maximization problem

as an unconstrained, maximin problem:

p∗ = max
X

min
Y⪰0
L(X, ν, Y ).

This is an immediate consequence of the following:

min
Y⪰0
⟨Y,X⟩ = min

t≥0
min

Y⪰0,TrY=t
⟨Y,X⟩ = min

t≥0
tλmin(X),

where we have exploited the representation of the minimum eigenvalue. The geometric interpretation

is that the cone of positive-semidefinite matrices has a 90◦ angle at the origin.
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Dual Problem

The minimax inequality then implies

p∗ ≤ d∗ := min
ν,Y⪰0

max
X
L(X, ν, Y ).

The corresponding dual function is

g(Y, ν) = max
X
L(X, ν, Y ) =

νT b if C −
∑m

i=1 νiAi + Y = 0

−∞ otherwise.

The dual problem then writes

d∗ = min
ν,Y⪰0

g(Y, ν) = min
ν,Y⪰0

νT b : C −
m∑
i=1

νiAi = −Y ⪯ 0.

After elimination of the variable Y , we find the dual

d∗ = min
ν
νT b : C −

m∑
i=1

νiAi ⪯ 0. (3.28)

which is in standard inequality form.

Theorem 3.28. (Strong duality in SDP) Consider the SDP

p∗ := max
X
⟨C,X⟩ : ⟨Ai, X⟩ = bi, i = 1, . . . ,m,X ⪰ 0

and its dual

d∗ = min
ν
νT b :

m∑
i=1

νiAi ⪰ C.

The following holds:

1. Duality is symmetric, in the sense that the dual of the dual is the primal

2. Weak duality always holds: p∗ ≤ d∗, so that, for any primal-dual feasible pair (X, ν), we have

νT b ≥ ⟨C,X⟩

3. If the primal (resp.dual) problem is bounded above (resp. below), and strictly feasible, then

p∗ = d∗ and the dual (resp. primal) is attained

4. If both problems are strictly feasible, then p∗ = d∗ and both problems are attained

3.11.3 SOCP Duality

We start from the second-order cone problem in inequality form:

p∗ := min
x

cTx

s.t. ∥Aix+ bi∥2 ≤ c
T
i x+ di, i = 1, . . . ,m,

where c ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R, i = 1, . . . ,m.
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Conic Lagrangian

To build a Lagrangian for this problem, we use the fact that, for any pair (t, y) :

max
(u,λ):∥u∥2≤λ

−uT y − tλ = max
λ≥0

λ (∥y∥2 − t) =

0 if ∥y∥2 ≤ t

+∞ otherwise.

The above means that the second-order cone has a 90◦ angle at the origin. To see this, observe that

max
(u,λ):∥u∥2≤λ

−uT y − tλ = − min
(u,λ):∥u∥2≤λ

(
u

λ

)T (
y

t

)
.

The objective in the right-hand side is proportional to the cosine of the angle between the vectors

involved. The largest angle achievable between any two vectors in the second-order cone is 90◦. If

∥y∥2 > t, then the cosine reaches negative values, and the maximum scalar product becomes infinite.

Geometric interpretation of the 90◦ angle at the origin property. The two orthogonal Dalt vectors

in black form the maximum angle attainable by vector in the second-order cone. text The vector

in red forms a greater angle with the vector on the left, and the corresponding scalar product is

unbounded. Consider the following Lagrangian, with variables x, λ ∈ Rm, ui ∈ Rni , i = 1, . . . ,m :

L (x, λ, u1, . . . , um) = cTx−
m∑
i=1

[
uTi (Aix+ bi) + λi

(
cTi x+ di

)]
.

Using the fact above leads to the following minimax representation of the primal problem:

p∗ = min
x

max
∥ui∥2≤λi,i=1,...,m

L (x, λ, u1, . . . , um) .

Conic dual

Weak duality expresses as p∗ ≥ d∗, where

d∗ := max
∥ui∥2≤λi,i=1,...,m

min
x
L (x, λ, u1, . . . , um) .

The inner problem, which corresponds to the dual function, is very easy to solve as the problem is

unconstrained and the objective affine (in x ). Setting the derivative with respect to x leads to the

dual constraints

c =

m∑
i=1

[
AT

i ui + λici
]

We obtain

d∗ = max
λ,ui,i=1,...,m

− λT d−
m∑
i=1

uTi bi

s.t. c =

m∑
i=1

[
AT

i ui + λici
]
, i = 1, . . . ,m

∥ui∥2 ≤ λi, i = 1, . . . ,m

The above is an SOCP, just like the original one.
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Theorem 3.29. (Strong duality in SOCP) Consider the SOCP

p∗ := min
x

cTx

s.t. ∥Aix+ bi∥2 ≤ c
T
i x+ di, i = 1, . . . ,m,

(3.29)

and its dual

d∗ = max
λ,ui,i=1,...,m

− λT d−
m∑
i=1

uTi bi

s.t. c =

m∑
i=1

[
AT

i ui + λici
]
, i = 1, . . . ,m

∥ui∥2 ≤ λi, i = 1, . . . ,m

(3.30)

The following holds:

1. Duality is symmetric, in the sense that the dual of the dual is the primal

2. Weak duality always holds: p∗ ≥ d∗, so that, for any primal-dual feasible pair (x, (ui, λi)
m
i=),

we have λT d+
∑m

i=1 u
T
i bi ≤ cTx.

3. If the primal (resp. dual) problem is bounded above (resp. below), and strictly feasible, then

p∗ = d∗ and the dual (resp. primal) is attained

4. If both problems are strictly feasible, then p∗ = d∗ and both problems are attained
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Chapter 4

Optimization Algorithm

Ref Chapters 4.2, 8.4-5, 9.1-7, 12.3-6

4.1 Optimization Algorithm

Optimization algorithms tend to be iterative procedures. Starting from a given point x0, they

generate a sequence
{
xk
}
of iterates (or trial solutions) that converge to a ”solution” - or at least

they are designed to be so.

Recall that scalars
{
xk
}
converges to 0 if and only if for all real numbers ε > 0 there exists a

positive integer K such that ∣∣xk∣∣ < ε for all k ≥ K.

Then
{
xk
}
converges to solution x∗ if and only if

{∥∥xk − x∗
∥∥} converges to 0 . We study algorithms

that produce iterates according to

• well determined rules-Deterministic Algorithm

• random selection process-Randomized Algorithm.

The rules to be followed and the procedures that can be applied depend to a large extent on the

characteristics of the problem to be solved. Generally, they are several kinds of solution, such as

local optimal, global optimal, first order derivative, and KKT point.

4.1.1 General Algorithm

A General Algorithm: A point to set mapping in a subspace of Rn.
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Theorem 4.1. (Page 222, Luenberger et al. (1984)) Let A be an ”algorithmic mapping” defined

over set X, and let sequence
{
xk
}
, starting from a given point x0, be generated from

xk+1 ∈ A
(
xk, . . .

)
Let a solution set S ⊂ X be given, and suppose

1. all points
{
xk
}
are in a compact set

2. there is a continuous (merit) function z(x) such that if x /∈ S, then z(y) < z(x) for all

y ∈ A(x); otherwise, z(y) ≤ z(x) for all y ∈ A(x)

3. the mapping A is closed at points outside S ( xk → x ∈ X and A
(
xk
)
= yk → y imply

y ∈ A(x)

Then, the limit of any convergent subsequences of
{
xk
}
is a solution in S. Note that compact set

means the set is closed and bounded. And it is the general optimization idea, how to solve the

specific problem is case by case. In the term of xk+1 ∈ A
(
xk, . . .

)
, it will be two cases. case 1 we

use xk. case 2 we use all previous information such as x0, ..., xk

Convergence Rate of Iterative Method

This section content is from Senning (2007).

Definition 4.2. If a sequence x1, x2, . . . , xn converges to a value r and if there exist real numbers

λ > 0 and α ≥ 1 such that

lim
n→∞

|xn+1 − r|
|xn − r|α

= λ (4.1)

then we say that α is the rate of convergence of the sequence

When α = 1 we say the sequence converges linearly and when α = 2 we say the sequence

converges quadratically. If 1 < α < 2 then the sequence exhibits superlinear convergence.

Many root-finding methods are fixed-point iterations. These iterations have this name because

the desired root r is a fixed-point of a function g(x), i.e., g(r)→ r. To be useful for finding roots, a

fixed-point iteration should have the property that, for x in some neighborhood of r, g(x) is closer

to r than x is. This leads to the iteration

xn+1 = g (xn) , n = 0, 1, 2, . . .

Newton’s method is an lexample of a fixed-point iteration since

xn+1 = g (xn) , g(x) = x− f(x)

f ′(x)
(4.2)

and clearly g(r) = r since f(r) = 0.
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Theorem 4.3. Let r be a fixed-point of the iteration xn+1 = g (xn) and suppose that g′(r) ̸= 0.

Then the iteration will have a linear rate of convergence.

Proof. Using Taylor’s Theorem for an expansion about fixed-point r we find

g(x) = g(r) + g′(r)(x− r) + g′′(ξ)

2
(x− r)2

where ξ is some value between x and r. Evaluating at xn and noting that xn+1 = g (xn) and g(r) = r

we obtain

xn+1 = r + g′(r) (xn − r) +
g′′(ξ)

2
(xn − r)2 .

Subtracting r from both sides and dividing by xn − r gives

xn+1 − r
xn − r

= g′(r) +
g′′(ξ)

2
(xn − r)

which, as n→∞, yields

lim
n→∞

|xn+1 − r|
|xn − r|

= |g′(r)| .

Comparing this with Equation 4.1 we see that α = 1 and λ = |g′(r)|, indicating that the method

converges linearly.

We use the Taylor expansion to approximate the original function, and g′′(ξ) is small term

comparing with g′(r). Next, consider the case when g′(r) = 0. This is important because it explains

why Newton’s method converges so quickly .

Theorem 4.4. Let r be a fixed-point of the iteration xn+1 = g (xn) and suppose that g′(r) = 0 but

g′′(r) ̸= 0. Then the iteration will have a quadratic rate of convergence.

Proof. Using Taylor’s Theorem once again, but including one more term, we have

g(x) = g(r) + g′(r)(x− r) + g′′(r)

2
(x− r)2 + g′′′(ξ)

6
(x− r)3.

As before, we substitute xn for x and use the facts that xn+1 = g (xn) , g(r) = r, and g′(r) = 0 to

obtain

xn+1 = r +
g′′(r)

2
(xn − r)2 +

g′′′(ξ)

6
(xn − r)3 .

Subtracting r from both sides and dividing by (xn − r)2 gives

xn+1 − r
(xn − r)2

=
g′′(r)

2
+
g′′′(ξ)

6
(xn − r)

which, as n→∞, gives

lim
n→∞

|xn+1 − r|
|xn − r|2

=
|g′′(r)|

2
.

Observe that α = 2, which shows the iteration will converge quadratically.
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In most instances this situation applies to Newton’s method. Computing g′(x) from 4.2 we have

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)
[f ′(x)]

2 =
f(x)f ′′(x)

[f ′(x)]
2 .

When this is evaluated at r, we find that g′(r) = 0 because f(r) = 0, provided f ′(r) ̸= 0, and so we

expect Newton’s method will converge quadratically. It is possible to show that

lim
x→r

g′(x) =
1

2

when f ′(r) = 0, so in this case Newton’s method exhibits only linear convergence.

4.1.2 Descent Direction Method

In this case, merit function z(x) = f(x), that is, just the objective itself.

1. Test for convergence If the termination conditions are satisfied at xk, then it is taken (accepted)

as a ”solution.” In practice, this may mean satisfying the desired conditions to within some

tolerance. If so, stop. Otherwise, go to step 2

2. Compute a search direction, say dk ̸= 0. This might be a direction in which the function value

is known to decrease within the feasible region

3. Compute a step length, say αk such that

f
(
xk + αkdk

)
< f

(
xk
)
. (4.3)

This may necessitate a one-dimensional (or line) search

4. Define the new iterate by setting

xk+1 − xk + αkdk

and return to step 1

There are two points, we could let α⋆ = argmin f
(
xk + αkdk

)
. It is also the optimized direction.

And the second formula is named the convergence speed/complexity

4.1.3 Algorithm Complexity and Speeds

The intrinsic computational cost/time of an algorithm depends on

• number of decision variables n : cost of the inner product of two vectors, cost of solving system

of linear equations

• number of constraints m : cost of the product of a matrix and a vector, cost of the product of

two matrices
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• number of nonzero data entries NNZ : sparse matrix/data representation

• the desired accuracy 0 ≤ ϵ < 1 : the cost could be propotional to 1
ϵ2 ,

1
ϵ , log

(
1
ϵ

)
, log log

(
1
ϵ

)
, . . .

• problem difficulty or complexity measures such as the Lipschiz constant β, the condition num-

ber of a matrix, etc

• Finite versus infinite convergence. For some classes of optimization problems there are al-

gorithms that obtain an exact solution-or detect the unboundedness-in a finite number of

iterations. If we determine the exact solution, the result will not depend on ϵ

• Polynomial-time versus exponential-time. The solution time grows, in the worst-case, as a

function of problem sizes (number of variables, constraints, accuracy, etc.)

• Convergence order and rate. If there is a positive number γ such that

∥∥xk − x∗
∥∥ ≤ O(1)

kγ
∥∥x0 − x∗

∥∥ ,
then

{
xk
}
converges arithmetically to x∗ with power γ. If there exists a number γ ∈ [0, 1)

such that ∥∥xk+1 − x∗
∥∥ ≤ γ ∥∥xk − x∗

∥∥ (
⇒
∥∥xk − x∗

∥∥ ≤ γk ∥∥x0 − x∗
∥∥) ,

then
{
xk
}

converges geometrically or linearly to x∗ with rate γ. If there exists a number

γ ∈ [0, 1) ∥∥xk+1 − x∗∥∥ ≤ γ ∥∥xk − x∗∥∥2 after γ
∥∥xk − x∗∥∥ < 1

then
{
xk
}
converges quadratically to x∗ (such as

{(
1
2

)2k}
)

It is a bit different in the computer science complexity, we also consider the the number of nonzero

data entries. And if we set the desired accuracy, the computation cost will decrease from left side.

Obviously, you can get the same conclusion in the below figure 4.1.3.

Regrading the convergence order, we attach detailed explanation from page 220 Luenberger et al.

(1984). Consider a sequence of real numbers {rk}∞k=0 converging to the limit r∗. We define several

notions related to the speed of convergence of such a sequence.

Definition 4.5. Let the sequence {rk} converge to r∗. The order of convergence of {rk} is defined

as the supremum of the nonnegative numbers p satisfying

0 ⩽ lim
k→∞

|rk+1 − r∗|
|rk − r∗|p

<∞.

To ensure that the definition is applicable to any sequence, it is stated in terms of limit superior

rather than just limit and 0/0 (which occurs if rk = r∗ for all k ) is regarded as finite. But these

technicalities are rarely necessary in actual analysis, since the sequences generated by algorithms

are generally quite well behaved.
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Figure 4.1: Cost vs Desired Accuracy

It should be noted that the order of convergence, as with all other notions related to speed of

convergence that are introduced, is determined only by the properties of the sequence that hold as

k →∞. Somewhat loosely but picturesquely, we are therefore led to refer to the tail of a sequence-

that part of the sequence that is arbitrarily far out. In this language we might say that the order

of convergence is a measure of how good the worst part of the tail is. Larger values of the order p

imply, in a sense, faster convergence, since the distance from the limit r∗ is reduced, at least in the

tail, by the p th power in a single step. Indeed, if the sequence has order p and (as is the usual case)

the limit

β = lim
k→∞

|rk+1 − r∗|
|rk − r∗|p

(4.4)

exists, then asymptotically we have

|rk+1 − r∗| = β |rk − r∗|p . (4.5)

Example 4.6. The sequence with rk = ak where 0 < a < 1 converges to zero with order unity, since

rk+1/rk = a

Example 4.7. The sequence with rk = a(2
k) for 0 < a < 1 converges to zero with order two, since

rk+1/r
2
k = 1

Algorithm Classes

Depending on information of the problem being used to create a new iterate, we have

• Zero-order algorithms. Popular when the gradient and Hessian information are difficult to

obtain/compute, e.g., no explicit function forms are given, functions are not differentiable,
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”black-box” optimization, etc

• First-order algorithms. Most popular now-days, suitable for large scale data optimization with

low accuracy requirement, e.g., Data Science, Machine Learning, Statistical Estimation ...

• Second-order algorithms. Popular for optimization problems with high accuracy need, e.g.,

some scientific computing, etc

4.1.4 Zero Order Method

Golden Section Search

Assume that the one variable function f(x) is Unimodel in interval [ab], that is, for any point

x ∈ [arbl] such that a ≤ ar < bl ≤ b, we have that f(x) ≤ max {f (ar) , f (bl)}. How do we find x∗

within an error tolerance ϵ. Answer is |xr − xl| < ϵ

1. Initialization: let xl = a, xr = b, and choose a constant 0 < r < 0.5

2. Let two other points x̂l = xl + r (xr − xl) and x̂r = xl + (1 − r) (xr − xl), and evaluate their

function values

3. Update the triple points xr = x̂r, x̂r = x̂l, xl = xl if f (x̂l) < f (x̂r); otherwise update the

triple points xl = x̂l, x̂l = x̂r, xr = xr; and return to Step 2 .

In either cases, the length of the new interval after one golden section step is (1 − r). If we set

(1− 2r)/(1− r) = r, then only one point is new in each step and needs to be evaluated. This give

r = 0.382 and the linear convergence rate is 0.618. This figure 4.1.4 from Wikipedia illustrate the

idea of golden section search

4.1.5 First Order Method

Bisection/Binary Search Method

For a one variable problem, an KKT point is the root of g(x) := f ′(x) = 0. Assume we know an

interval [ab] such that a < b, and g(a)g(b) < 0. Then we know there exists an x∗, a < x∗ < b, such

that g (x∗) = 0; that is, interval [ab] contains a root of g. How do we find x within an error tolerance

ϵ, that is, |x− x∗| ≤ ϵ

1. Initialization: let xl = a, xr = b

2. Let xm = (xl + xr) /2, and evaluate g (xm)

3. If g (xm) = 0 or xr − xl < ϵ stop and output x∗ = xm. Otherwise, if g (xl) g (xm) > 0 set

xl = xm; else set xr = xm; and return to Step 2

63



Figure 4.2: Diagram of Golden Section Search

The length of the new interval containing a root after one bisection step is 1/2 which gives the linear

convergence rate is 1/2, and this establishes a linear convergence rate 0.5.

Steepest Descent Method (SDM)

Let f be a differentiable function and assume we can compute gradient (column) vector ∇f . We

want to solve the unconstrained minimization problem

min
x∈Rn

f(x).

In the absence of further information, we seek a first-order KKT or stationary point of f , that is,

a point x∗ at which ∇f (x∗) = 0. Here we choose direction vector dk = −∇f
(
xk
)
as the search

direction at xk, which is the direction of steepest descent. The number αk ≥ 0, called step-size, is

chosen ”appropriately” as

αk ∈ argmin f
(
xk − α∇f

(
xk
))
. (4.6)

Then the new iterate is defined as

xk+1 = xk − αk∇f
(
xk
)

(4.7)

In some implementations, step-size αk is fixed through out the process - independent of iteration

count k

Example 4.8. Let f(x) = 1
2x

TQx+ cTx where Q ∈ Rn×n is symmetric and positive definite. This

implies that the eigenvalues of Q are all positive. The unique minimum x∗ of f(x) exists and is

given by the solution of the system of linear equations

∇f(x) = Qx+ c = 0
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or equivalently

Qx = −c.

The iterative scheme becomes, from dk = −
(
Qxk + c

)
xk+1 = xk + αkdk = xk − αk

(
Qxk + c

)
.

To compute the step size, αk, we consider

f
(
xk + αdk

)
=cT

(
xk + αdk

)
+

1

2

(
xk + αdk

)T
Q
(
xk + αdk

)
=cTxk + αcTdk +

1

2

(
xk
)T
Qxk + α

(
xk
)T
Qdk +

1

2
α2
(
dk
)T
Qdk

which is a strictly convex quadratic function of α. Its minimizer αk is the unique value of α where

the derivative f ′
(
xk + αdk

)
vanishes, i.e., where

cTdk +
(
xk
)T
Qdk + α

(
dk
)T
Qdk = 0.

Thus

αk = −
cTdk +

(
xk
)T
Qdk

(dk)
T
Qdk

=

∥∥dk
∥∥2

(dk)
T
Qdk

. (4.8)

The recursion for the method of steepest descent now becomes

xk+1 = xk −

( ∥∥dk
∥∥2

(dk)
T
Qdk

)
dk. (4.9)

Therefore, minimize a strictly convex quadratic function is equivalent to solve a system of equation

with a positive definite matrix. The former may be ideal if the system only needs to be solved

approximately.

Here we can determine the close form solution of αk. We recall how to compute the optimal αk,

let α⋆ = argmin f
(
xk + αkdk

)
. The direct method is to take the first order derivative.

The following theorem gives some conditions under which the steepest descent method will

generate a sequence of iterates that converge.

Theorem 4.9. Let f : Rn → R be given. For some given point x0 ∈ Rn, let the level set

X0 =
{
x ∈ Rn : f(x) ≤ f

(
x0
)}

be bounded. Assume further that f is continuously differentiable on the convex hull of X0. Let{
xk
}
be the sequence of points generated by the steepest descent method initiated at x0. Then every

accumulation point of
{
xk
}
is a stationary point of f

Proof. Note that the assumptions imply the compactness of X0. Since the iterates will all belong

to X0, the existence of at least one accumulation point of
{
xk
}

is guaranteed by the Bolzano-

Weierstrass Theorem. Let x be such an accumulation point, and without losing generality,
{
xk
}

65



converge to x. Assume ∇f(x) ̸= 0. Then there exists a value ᾱ > 0 and a δ > 0 such that

f(x− ᾱ∇f(x)) + δ = f(x). This means that y := x− ᾱ∇f(x) is an interior point of X0 and

f(y) = f(x)− δ

For an arbitrary iterate of the sequence, say xk, the Mean-Value Theorem implies that we can write

f
(
xk − ᾱ∇f

(
xk
))

= f(y) +
(
∇f

(
yk
))T (

xk − ᾱ∇f
(
xk
)
− y

)
where yk lies between xk−ᾱ∇f

(
xk
)
and y. Then

{
yk
}
→ y and

{
∇f

(
yk
)}
→ ∇f(y) as

{
xk
}
→ x.

Thus, for sufficiently large k,

f
(
xk − ᾱ∇f

(
xk
))
≤ f(y) + δ

2
= f(x)− δ

2

Since the sequence
{
f
(
xk
)}

is monotonically decreasing and converges to f(x), hence

f(x) < f
(
xk+1

)
= f

(
xk − αk∇f

(
xk
))
≤ f

(
xk − ᾱ∇f

(
xk
))
≤ f(x)− δ

2
(4.10)

which is a contradiction. Hence ∇f(x) = 0.

Remark 4.10. According to this theorem, the steepest descent method initiated at any point of the

level set X0 will converge to a stationary point of f , which property is called global convergence.

This proof can be viewed as a special form of Theorem 4.1: the SDM algorithm mapping is closed

and the (merit) objective function is strictly decreasing if not optimal yet.

What if the SDM optimizes he β-Lipschitz function. Let f(x) be differentiable every where and

satisfy the (first-order) β-Lipschitz condition, that is, for any two points x and y

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥ (4.11)

for a positive real constant β. Then, we have

Lemma 4.11. Let f be a β-Lipschitz function. Then for any two points x and y

f(x)− f(y)−∇f(y)T (x− y) ≤ β

2
∥x− y∥2. (4.12)

At the kth step of SDM, we have

f(x)− f
(
xk
)
≤ ∇f

(
xk
)T (

x− xk
)
+
β

2

∥∥x− xk
∥∥2 .

The left hand strict convex quadratic function of x establishes a upper bound on the objective

reduction. And then we can minimize the right hand term because of the boundness and we assume

that f(x) < f
(
xk
)
if ∇f

(
xk
)
̸= 0

Let us minimize the quadratic function

xk+1 = argmin
x
∇f

(
xk
)T (

x− xk
)
+
β

2

∥∥x− xk
∥∥2
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and let the minimizer be the next iterate. Then it has a close form:

∂

∂xk

(
∇f

(
xk
)T (

xk+1 − xk
)
+
β

2

∥∥xk+1 − xk
∥∥2) = 0

xk+1 = xk − 1

β
∇f

(
xk
)

which is the SDM with the fixed step-size 1
β . Then from 4.11

f
(
xk+1

)
− f

(
xk
)
≤ ∇f

(
xk
)T (− 1

β
∇f

(
xk
))

+
β

2
|| − 1

β
∇f

(
xk
)
||2

f
(
xk+1

)
− f

(
xk
)
≤ − 1

2β

∥∥∇f (xk
)∥∥2 , or f

(
xk
)
− f

(
xk+1

)
≥ 1

2β

∥∥∇f (xk
)∥∥2

Then, after K(≥ 1) steps, we must have

f
(
x0
)
− f

(
xK
)
≥ 1

2β

K−1∑
k=0

∥∥∇f (xk
)∥∥2 (4.13)

Theorem 4.12. (Error Convergence Estimate Theorem) Let the objective function p∗ = inf f(x) be

finite and let us stop the SDM as soon as
∥∥∇f (xk

)∥∥ ≤ f for a given tolerance f ∈ (0, 1). Then the

SDM terminates in
2β(f(x0)−p∗)

ϵ2 steps.

Proof. From inequality 4.16, after K =
2β(f(x0)−p∗)

ϵ2 steps

f
(
x0
)
− p∗ ≥ f

(
x0
)
− f

(
xK
)
≥ 1

2β

K−1∑
k=0

∥∥∇f (xk
)∥∥2

If
∥∥∇f (xk

)∥∥ > ϵ for all k = 0, . . . ,K − 1, then we have

f
(
x0
)
− p∗ > K

2β
ϵ2 ≥ f

(
x0
)
− p∗

which is a contradiction.

Corollary 4.13. If a minimizer x∗ of f is attainable, then the SDM terminates in
β2∥x0−x∗∥2

ϵ2 steps.

The proof is based on Lipschitz propriety with x = x0 and y = x∗ and noting ∇f(y) = ∇f (x∗) = 0

f
(
x0
)
− p∗ = f

(
x0
)
− f (x∗) ≤ β

2

∥∥x0 − x∗∥∥2
Here we consider f(x) being convex and differentiable everywhere and satisfying the (first-order)

β-Lipschitz condition. Given the knowledge β, we again adopt the fixed step-size rule:

xk+1 = xk − 1

β
∇f

(
xk
)
. (4.14)

Theorem 4.14. For convex Lipschitz optimization the Steepest Descent Method generates a sequence

of solutions such that

f
(
xk+1

)
− f (x∗) ≤ β

k + 2

∥∥x0 − x∗∥∥2 and min
l=0,...,k

∥∥∇f (xl
)∥∥2 ≤ 4β2

(k + 1)(k + 2)

∥∥x0 − x∗∥∥2 ,
(4.15)

where x∗ is a minimizer of the problem.

67



Proof. For simplicity, we let δk = f
(
xk
)
− f (x∗) (≥ 0),gk = ∇f

(
xk
)
, and ∆k = xk−x∗ in the rest

of proof. As we have proved for general Lipschitz optimization

δk+1 − δk = f
(
xk+1

)
− f

(
xk
)
≤ − 1

2β

∥∥gk
∥∥2 , that is δk − δk+1 ≥ 1

2β

∥∥gk
∥∥2 (4.16)

Furthermore, from the convexity,

− δk = f (x∗)− f
(
xk
)
≥
(
gk
)T (

x∗ − xk
)
= −

(
gk
)T

∆k, that is δk ≤
(
gk
)T

∆k (4.17)

Thus, from 4.16 and 4.18

δk+1 = δk+1 − δk + δk

≤ − 1

2β

∥∥gk∥∥2 + (gk)T ∆k

= −β
2

∥∥xk+1 − xk
∥∥2 − β (xk+1 − xk

)
∆k, ( using (4)) )

= −β
2

(∥∥xk+1 − xk
∥∥2 + 2

(
xk+1 − xk

)T
∆k
)

= −β
2

(∥∥∆k+1 −∆k
∥∥2 + 2

(
∆k+1 −∆k

)T
∆k
)

=
β

2

(∥∥∆k
∥∥2 − ∥∥∆k+1

∥∥2)

(4.18)

Sum up 4.18 from 1 to k + 1, we have

k+1∑
l=1

δl ≤ β

2

(∥∥∆0
∥∥2 − ∥∥∆k+1

∥∥2) ≤ β

2
∥∆n∥2

From the proof of the Corollary 4.13 of last lecture, we have δ0 ≤ β
2

∥∥∆0
∥∥2. Thus,

k+1∑
l=0

δl ≤ β
∥∥∆0

∥∥2 ,
and

k+1∑
l=0

δl =

k+1∑
l=0

(l + 1− l)δl

=

k+1∑
l=0

(l + 1)δl −
k+1∑
l=0

lδl

=

k+2∑
l=1

lδl−1 −
k+1∑
l=1

lδl

= (k + 2)δk+1 +

k+1∑
l=1

lδl−1 −
k+1∑
l=1

lδl

= (k + 2)δk+1 +

k+1∑
l=1

l
(
δl−1 − δl

)
≥ (k + 2)δk+1 +

k+1∑
l=1

l
1

2β

∥∥gl−1
∥∥2
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where the first inequality comes from 4.16. Let ∥g′∥ = minl=0,...,k

∥∥ gl
∥∥. Then we finally have

(k + 2)δk+1 +
(k + 1)(k + 2)/2

2β
∥g′∥2 ≤ β

∥∥∆0
∥∥2 ,

which completes the proof.

4.1.6 Second Order Method

For functions of a single real variable x, the KKT condition is g(x) := f ′(x) = 0. When f is twice

continuously differentiable then g is once continuously differentiable, Newton’s method can be a very

effective way to solve such equations and hence to locate a root of g. Given a starting point x0,

Newton’s method for solving the equation g(x) = 0 is to generate the sequence of iterates

xk+1 = xk −
g
(
xk
)

g′ (xk)
. (4.19)

The iteration is well defined provided that g′
(
xk
)
̸= 0 at each step. For strictly convex function,

Newton’s method has a linear convergence rate and, when the point is ”close” to the root, the

convergence becomes quadratic, which lead to the iteration bound of O(log log(1/ϵ)). From the zero

order method to second order method. It indicates that high order information can guarantee high

convergence speed.

Theorem 4.15. (Smale (1986)) Let g(x) be an analytic function. Then, if x in the domain of g

satisfies

sup
k>1

∣∣∣∣g(k)(x)k!g′(x)

∣∣∣∣1/(k−1)

≤ (1/8)

∣∣∣∣g′(x)g(x)

∣∣∣∣ .
Then, x is an approximate root of g. In the following, for simplicity, let the root be in interval[

0 R
]
.

Corollary 4.16. (Ye (2011)) Let g(x) be an analytic function in R++and let g be convex and

monotonically decreasing. Furthermore, for x ∈ R++and k > 1 let∣∣∣∣g(k)(x)k!g′(x)

∣∣∣∣1/(k−1)

≤ α

8
· 1
x

for some constant α > 0. Then, if the root x̄ ∈ [x̂, (1 + 1/α)x̂] ⊂ R++, x̂ is an approximate root

of g. Ref Chapter 4.2, 8.4-5, 9.1-7, 12.3-6
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4.2 More First-Order Optimization Algorithms

4.2.1 Double-Directions: Heavy-Ball Method

Polyak (1964) proposes this method named Heavy-Ball Method

xk+1 = xk − 4(√
λn +

√
λ1
)2∇f (xk

)
+

( √
λn −

√
λ1√

λn +
√
λ1
)) (xk − xk−1

)
(4.20)

where the convergence rate can be improved to(√
λn −

√
λ1√

λn +
√
λ1

)2

This is also called the Parallel-Tangent or Conjugate Direction method, where the second direction-

term in the formula is nowadays called ”acceleration” or”momentum” direction. For minimizing

general functions, we can let

xk+1 = xk − αg∇f
(
xk
)
+ αm

(
xk − xk−1

)
= xk + d (αg, αm)

where the pair of step-sizes (αg, αm) can be chosen to

min
(αg,αd)

∇f
(
xk
)
d (αg, αm) +

1

2
d (αg, αm)∇2f

(
xk
)
d (αg, αm)

where x1 can be computed from the SDM step. If ∇f
(
xk
)
≤ 0 and ∇2f

(
xk
)
is SDP matrix, the

objective function is convex.

4.2.2 Accelerated Steepest Descent Method (ASDM)

Nesterov (????) propose an accelerated steepest descent method that works as follows:

λ0 = 0, λk+1 =
1 +

√
1 + 4 (λk)

2

2
, αk =

1− λk

λk+1
,

x̃k+1 = xk − 1

β
∇f

(
xk
)
,xk+1 =

(
1− αk

)
x̃k+1 + αkx̃k.

Note that
(
λk
)2

= λk+1
(
λk+1 − 1

)
, λk > k/2 and αk ≤ 0.

Theorem 4.17. (Accelerated Steepest Descent) Let f(x) be convex and differentiable everywhere,

satisfies the (first-order) β-Lipschitz condition, and admits a minimizer x∗. Then, the method of

accelerated steepest descent generates a sequence of solutions such that

f (x̃k+1)− f (x∗) ≤ 2β

k2
∣∣x0 − x∗∣∣2 ,∀k ≥ 1.

The proof we can check out in the page 269 of textbook Luenberger et al. (1984)

70



4.2.3 First-Order Algorithms for Conic Constrained Optimization (CCO)

Consider the conic nonlinear optimization problem:

min f(x)

s.t. x ∈ K

Nonnegative Linear Regression: given data A ∈ Rm×n and b ∈ Rm

min f(x) =
1

2
∥Ax− b∥2

s.t. x ≥ 0;

where ∇f(x) = AT (Ax− b)

Semidefinite Linear Regression: given data Ai ∈ Sn for i = 1, . . . ,m and b ∈ Rm

min f(X) =
1

2
∥AX − b∥2

s.t. X ⪰ 0

where ∇f(X) = AT (AX − b).

AX =

 A1 •X
· · ·

Am •X

 andATy =
∑
i=1

yiAi

Suppose we start from a feasible solution x0 or X0.

4.2.4 SDM with Feasible Region Projection

x̂k+1 = xk − 1

β
∇f

(
xk
)

xk+1 = ProjK
(
x̂k+1

)
: Solve min

x∈K

∥∥x− x̂k+1
∥∥2 (4.21)

For examples:

• if K = {x : x ≥ 0}, then

xk+1 = ProjK
(
x̂k+1

)
= max

{
0, x̂k+1

}
• If K = {X : X ⪰ 0}, then factorize X̂k+1 =

∑n
j=1 λjvjv

T
j and let

Xk+1 = ProjK

(
X̂k+1

)
=
∑

j:λj>0

λjvjv
T
j

The drawback is that the total eigenvalue-factorization may be costly. But the convergence rate is

linear
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Consider the conic nonlinear optimization problem:

min f(x)

s.t. Ax = b

x ∈ K

The projection method becomes, starting from a feasible solution x0 and let direction

dk = −
(
I −AT

(
AAT

)−1
A
)
∇f

(
xk
)

xk+1 = xk + αkdk

we could hold above formula

A
(
xk + αkdk

)
= b

Adk = 0

Adk +A∇f
(
xk
)
= A∇f

(
xk
)

Adk +A∇f
(
xk
)
= AAT

(
AAT

)−1
A∇f

(
xk
)

dk +∇f
(
xk
)
= AT

(
AAT

)−1
A∇f

(
xk
)

dk =
(
AT
(
AAT

)−1
A− I

)
∇f

(
xk
)

where the stepsize can be chosen from line-search or again simply let

αk =
1

β

and β is the (global) Lipschitz constant. This method also convergence linearly.

• K ⊂ Rn whose support size is no more than d(< n) : x = ProjK(x̂) contains the largest d

absolute entries of x̂ and set the rest of them to zeros

• K ⊂ Rn
+ and its support size is no more than d(< n) : x = ProjK(x̂) contains the largest no

mor than d positive entries of x̂ and set the rest of them to zeros

• K ⊂ Sn whose rank is no more than d(< n) : factorize X̂ =
∑n

j=1 λjvjv
T
j with |λ1| ≥ |λ2| ≥

. . . ≥ |λn| then ProjK(X̂) =
∑d

j=1 λjvjv
T
j

• K ⊂ Sn
+ whose rank is no more than d(< n) : factorize X̂ =

∑n
j=1 λjvjv

T
j with λ1 ≥ λ2 ≥

. . . ≥ λn then ProjK(X̂) =
∑d

j=1 max {0, λj}vjv
T
j

4.2.5 Multiplicative-Update

At the k th iterate with xk > 0 :

xk+1 = xk exp

(
− 1

β
∇f

(
xk
))
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Then

log
(
xk+1

)
= log

(
xk
)
− 1

β
▽ f(xk)

Note that xk+1 remains positive in the updating process. The classical Projected SDM update can

be viewed as

xk+1 = argmin
x≥0
∇f

(
xk
)T

x+
β

2

∥∥x− xk
∥∥2 .

Definition 4.18. A strongly convex function is also strictly convex, but not vice versa. A differen-

tiable function f is called strongly convex with parameter m > 0 if the following inequality holds for

all points x, y in its domain:

(∇f(x)−∇f(y))T (x− y) ≥ m∥x− y∥22

or, more generally,

⟨∇f(x)−∇f(y), x− y⟩ ≥ m∥x− y∥2 (4.22)

where ∥ · ∥ is any norm.

One can choose any strongly convex function h(·) and define

Dh(x,y) = h(x)− h(y)−∇h(y)T (x− y)

and define the update as

xk+1 = argmin
x≥0
∇f

(
xk
)T

x+ βDh

(
x,xk

)
.

The update above is the result of choosing (negative) entropy function h(x) =
∑

j xj log (xj).

(https://math.stackexchange.com/users/474939/gerhard s) is the proof of strong convex negative

entropy function.

4.2.6 Reduced Gradient Method

. Simplex method is important to solve the linear program. we can use the simplex to reduce

gradient. Think this linear program

min cTx

s.t. Ax = b

x ≥ 0

(4.23)

where A ∈ Rm×n has a full row rank m.

Theorem 4.19. (The Fundamental Theorem of LP in Algebraic form) Given (LP) and (LD) where

A has full row rank m,

• if there is a feasible solution, there is a basic feasible solution (Carathéodory’s theorem)
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• if there is an optimal solution, there is an optimal basic solution

Main idea of procedure

1. Initialization Start at a BSF or corner point of the feasible polyhedron

2. Test for Optimality. Compute the reduced gradient vector at the corner. If no descent and fea-

sible direction can be found, stop and claim optimality at the current corner point; otherwise,

select a new corner point and go to Step 2

The reduced gradient is equivalent with reduced cost in Bertsimas and Tsitsiklis (1997)

Suppose the basis of a basic feasible solution is AB and the rest is AN . One can transform the

equality constraint to

Ax = b

A−1
B Ax = A−1

B b

A−1
B (ABxB +ANxN ) = A−1

B b

xB = A−1
B b−A−1

B ANxN

(4.24)

That is, we express xB in terms of xN , the non-basic variables are are active for constraints x ≥ 0.

Then the objective function equivalently becomes

cTx = cTBxB + cTNxN

= cTBA
−1
B b− cTBA

−1
B ANxN + cTNxN

= cTBA
−1
B b+

(
cTN − cTBA

−1
B AN

)
xN

Vector rT = cT − cTBA
−1
B A is called the Reduced Gradient/Cost Vector where rB = 0 always.

Theorem 4.20. If Reduced Gradient Vector rT = cT − cTBA
−1
B A ≥ 0, then the BFS is optimal.

Proof. Let yT = cTBA
−1
B (called Shadow Price Vector), then y is a dual feasible solution

(
r = c−ATy ≥ 0

)
and cTx = cTBxB = cTBA

−1
B b = yTb, that is, the duality gap is zero

And the simplex procedure shows below

1. Initialize Start a BFS with basic index set B and let N denote the complementary index set

2. Test for Optimality: Compute the Reduced Gradient Vector r at the current BFS and let

re = min
j∈N
{rj} .

If re ≥ 0, stop - the current BFS is optimal
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3. Determine the Replacement: Increase xe while keep all other non-basic variables at the zero

value (inactive) and maintain the equality constraints:

xB = A−1
B b−A−1

B A.exe(≥ 0).

If xe can be increased to ∞, stop - the problem is unbounded below. Otherwise, let the basic

variable x0 be the one first becoming 0

4. Update basis: update B with xo being replaced by xe, and return to Step 2

4.2.7 Frank-Wolf Algorithm

min f(x)

s.t. x = b

x ≥ 0

where A ∈ Rm×n has a full row rank m. Start with a feasible solution x0, and at the kth iterate do:

1. Solve the LP problem

min∇f
(
xk
)T

x s.t. Ax = b,x ≥ 0

and let x̃k+1 be an optimal solution

2. Choose a step-size 0 < αk ≤ 1 and let

xk+1 = xk + αk
(
x̃k+1 − xk

)
.

This is also called sequential linear programming (SLP) method.

We summary the first-order method

• Good global convergence property (e.g. starting from any (feasible) solution under mild tech-

nical assumption...)

• Simple to implement and the computation cost is mainly compute the numerical gradient

• Maybe difficult to decide step-size: simple back-track is popular in practice

• The convergence speed can be slow: not suitable for high accuracy computation, certain ac-

celerations available

• Can only guarantee converging to a first-order KKT solution

Ref Chapter 14.1-6
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4.3 Dual/Lagrangian Methods for Constrained Optimization

4.3.1 Local Lagrangian Method

We consider the nonlinear program

f∗ := min f(x)

s.t. h(x) = 0

x ∈ X

(4.25)

Recall that the Lagrangian function:

L(x,y) = f(x)− yTh(x).

and the dual function:

ϕ(y) = min
x∈X

L(x,y)

and the dual problem

f∗ ≥ ϕ∗ := maxϕ(y).

In many cases, we can find y∗ of dual problem. Suppose x∗ is a local minimizer, and consider the

localized (convex) problem and the last constraint means the x belongs to x⋆ neighborhood

f (x∗) := min f(x)

s.t. h(x) = 0

x ∈ X

∥x− x∗∥2 ≤ ϵ

(4.26)

Then, the localized Lagrangian function:

Lx∗(x,y, µ) = f(x)− yTh(x)− µ
(
∥x− x∗∥2 − ϵ

)
s.t.µ ≤ 0

and the localized dual function:

ϕx∗(y, µ) = min
x∈X,∥x−x∗∥2≤ϵ

Lx∗(x,y, µ)

and the localized dual problem

maxϕ(y, µ)

Under certain constraint qualification and local convexity conditions, we must have f (x∗) = ϕ (y∗, µ∗ = 0)

where the localization constraint becomes inactive.

Let x(y) be a minimizer and minimizer corresponds to the multiplier y. Then

ϕ(y) = f(x(y))− yTh(x(y))
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Thus
∇ϕ(y) = ∇f(x(y))T∇x(y)− yT∇h(x(y))∇x(y)− h(x(y))

=
(
∇f(x(y))T − yT∇h(x(y))

)
∇x(y)− h(x(y))

= −h(x(y))

(4.27)

According to the definitionx(y), we vanish the right-hand first term.

By the definition, we have

∇f(x(y))T − yT∇h(x(y)) = 0

And the Hessian is the derivative of gradient

∇2ϕ(y) = −∇h(x(y))∇x(y)

and differentiate this with respect to y

∇2f(x(y))T∇x(y)−∇h(x(y))T − yT∇2h(x(y))∇x(y) = 0

∇x(y =
(
∇2

xL(x(y),y)
)−1∇h(x(y))T

Similarly, we can substitute above Hessian and derive

∇2ϕ(y) = −∇h(x(y))
(
∇2

xL(x(y),y)
)−1∇h(x(y))T (4.28)

where ∇2
xL(x(y),y) is the Hessian of the Lagrangian function that is assumed to be positive definite

at any (local) minimizer.

Lemma 4.21. the dual function ϕ has gradient

∇ϕ(y) = −h(x(y))

Lemma 4.22. The Hessian of the dual function is

∇2ϕ(y) = −∇h(x(y))
(
∇2

xL(x(y),y)
)−1∇h(x(y))T

There two lemmas indicate the localization primal and dual problem has the local solution x⋆

and y⋆ respectively

Example 4.23. we have toy example

min (x1 − 1)
2
+ (x2 − 1)

2

s.t. x1 + 2x2 − 1 = 0

2x1 + x2 − 1 = 0

Lagrangian formula

L(x,y) = (x1 − 1)
2
+ (x2 − 1)

2 − y1 (x1 + 2x2 − 1)− y2 (2x1 + x2 − 1)

x1 and x2 have the closed form by differentiating with respect to x1, x2

x1 = 0.5y1 + y2 + 1, x2 = y1 + 0.5y2 + 1
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substitute to the Lagrangian formula

ϕ(y) = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2

The gradient of dual function

∇ϕ(y) =

(
2.5y1 + 2y2 + 2

2y1 + 2.5y21 + 2

)
The Hessian of the dual function is

∇2ϕ(y) = −

(
1 2

2 1

)(
2 0

0 2

)−1(
1 2

2 1

)T

= −

(
2.5 2

2 2.5

)

4.3.2 Augmented Lagrangian Function (ALF)

The augmented Lagrangian function is an efficient method for local optimization problems. And

this method combines the primal-dual method and penalty function. It will discard each drawback

of the method. Let consider this toy example

Example 4.24. (Fisher Example)

min 5 log (2x1 + x2) + 8 log (3x3 + x4)

s.t. x1 + x3 = 1

x2 + x4 = 1

x ≥ 0

The Lagrangian function

L(x,y) = 5 log (2x1 + x2) + 8 log (3x3 + x4)− y1 (x1 + x3 − 1)− y2 (x2 + x4 − 1)

Start from y0 > 0, at the kth step, compute xk+1 from

xk+1 = argmax
x≥0

L
(
x,yk

)
,

then let

yk+1 = yk +
1

β

(
Axk+1 − b

)
In both theory and practice, we actually consider an augmented Lagrangian function (ALF)

La(x,y) = f(x)− yTh(x) +
β

2
∥h(x)∥2,

which corresponds to an equivalent problem above:

f∗ := min f(x) +
β

2
∥h(x)∥2

s.t. h(x) = 0

x ∈ X

(4.29)
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Note that, although at feasibility the additional square term in objective is redundant, it helps

to improve strict convexity of the Lagrangian function. The Fisher example:

La(x,y) = 5 log (2x1 + x2) + 8 log (3x3 + x4)− y1 (x1 + x3 − 1)− y2 (x2 + x4 − 1)

+
β

2

(
(x1 + x3 − 1)

2
+ (x2 + x4 − 1)

2
)

Now the dual function:

ϕa(y) = min
x∈X

La(x,y)

and the dual problem

f∗ ≥ ϕ∗a := max ϕa(y).

Note that the dual function approximately satisfies 1
β -Lipschitz condition (see Chapter 14 of Luen-

berger et al. (1984)). For the convex optimization case, say h(x) = Ax− b, we have

∇2La(x,y) = ∇2f(x) + β
(
ATA

)
.

The augmented Lagrangian method (ALM) is: Start from any
(
x0 ∈ X,y0

)
, we compute a new

iterate pair

xk+1 = arg min
x∈X

La

(
x,yk

)
, and yk+1 = yk − βh

(
xk+1

)
The calculation of x is used to compute the gradient vector of ϕa(y), which is a steepest ascent

direction. The method converges just like the SDM, because the dual function satisfies 1
β -Lipschitz

condition. Other SDM strategies may be adapted to update y (the BB, ASDM, Conjugate, Quasi-

Newton ...).

Consider the convex optimization case h(x) = Ax − b. Since xk+1 makes KKT condition and

take the derivative:
0 = ∇f

(
xk+1

)
−ATyk + βAT

(
Axk+1 − b

)
= ∇f

(
xk+1

)
−AT

(
yk − β

(
Axk+1 − b

))
= ∇f

(
xk+1

)
−ATyk+1

we only need to be concerned about whether or not
∥∥Axk − b

∥∥ converges to zero and how fast it

converges. First, from the convexity of f(x), we have

0 ≤
(
∇f

(
xk+1

)
−∇f

(
xk
))T (

xk+1 − xk
)

=
(
−ATyk+1 +ATyk

)T (
xk+1 − xk

)
=
(
yk+1 − yk

)T (
Axk+1 −Axk

)
= −β

(
Axk+1 − b

) (
Axk+1 − b−

(
Axk − b

))
which implies that

∥∥Axk+1 − b
∥∥ ≤ ∥∥Axk − b

∥∥, that is, the error is non-increasing. Note that it is

easy to get 0 ≤
(
∇f

(
xk+1

)
−∇f

(
xk
))T (

xk+1 − xk
)
from convex function first order condition.

Proof. From convex function first order condition

− (f(y)− (x)) ≤ −∇f(x)T (y − x)

f(y)− (x) ≤ ∇f(y)T (y − x)
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Then

0 ≤ (∇f (y)−∇f (x))T (y − x)

Again, from the convexity, we have

0 ≤
(
∇f

(
xk+1

)
−∇f (x∗)

)T (
xk+1 − x∗)

=
(
ATyk+1 −ATy∗)T (xk+1 − x∗)

=
(
yk+1 − y∗)T (Axk+1 −Ax∗)

=
(
yk+1 − y∗)T (Axk+1 − b

)
=

1

β

(
yk+1 − y∗)T (yk − yk+1

)
Thus, from the positivity of the cross product, we have∥∥yk − y∗∥∥2 =

∥∥yk − yk+1 + yk+1 − y∗∥∥2
≥
∥∥yk − yk+1

∥∥2 + ∥∥yk+1 − y∗∥∥2
= β

∥∥Axk+1 − b
∥∥2 + ∥∥yk+1 − y∗∥∥2

Sum up from 0 to k of the inequality we have

∥∥y0 − y∗∥∥2 ≥ ∥∥yk+1 − y∗∥∥2 + β

k∑
l=0

∥∥Axl+1 − b
∥∥2

≥ β
k∑

l=0

∥∥Axl+1 − b
∥∥2

≥ (k + 1)β
∥∥Axk+1 − b

∥∥2
4.4 Augmented Direction Method with Multipliers (ADMM)

4.4.1 Two-Blocks ADMM

For the ADMM method, we consider two block structured problem

min f1 (x1) + f2 (x2) s.t. A1x1 +A2x2 = b,x1 ∈ X1,x2 ∈ X2.

Consider

L (x1,x2,y) = f1 (x1) + f2 (x2)− yT (A1x1 +A2x2 − b) +
β

2
∥A1x1 +A2x2 − b∥2 .

Then, for any given
(
xk1 ,x

k
2 , y

k
)
, we compute a new iterate

xk+1
1 = arg min

x1∈X1

L
(
x1,x

k
2 ,y

k
)

xk+1
2 = arg min

x2∈X2

L
(
xk+1
1 ,x2,y

k
)

yk+1 = yk β
(
A1x

k+1
1 +A2x

k+1
2 b

)
.
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Again, we can prove that the iterates converge with the same speed. The ADMM method resembles

the Block Coordinate Descent (BCD) Method

Consider the standard-form LP

min cTx

s.t. Ax = b

x ≥ 0

min cTx1

s.t. Ax1 = b

x1 − x2 = 0

x2 ≥ 0

L (x1,x2,y) = cTx1 − yT (Ax1 − b)− sT (x1 − x2) +
β

2

(
∥Ax1 − b∥2 + ∥x1 − x2∥2

)
where y and s are the multiplier vectors of first and second equality constraints in the reformulation.

The advantage of such splitting reformulation is that the update of either x1 or x2 has a simple close

form solution.

Consider the dual LP
max(y,s) bTy

s.t. ATy + s = c, s ≥ 0

The augmented Lagrangian function would be

L(y, s,x) = −bTy − xT
(
ATy + s− c

)
+
β

2

∥∥ATy + s− c
∥∥3 ,

where β is a positive parameter, and x is the multiplier vector.

The ADMM for the dual is straightforward: starting from any y0, s0 ≥ 0, and multiplier x0, -

Update variable y:

yk+1 = argmin
y
L
(
y, sk,xk

)
- Update slack variable s:

sk+1 = argmin
s≥0

L
(
yk+1, s,xk

)
- Update multipliers x :

xk+1 = xk − β
(
ATyk+1 + sk+1 − c

)
.

Note that the updates of y is a least-squares problem with constant matrix, and the update of s

has a simple close form. (Also note that x would be non-positive at the end, since we changed

maximization to minimization of the dual.) To split y into multi blocks and update cyclically in

random order? The answer is it could work well.
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we provide the toy example

min 5 log (2x1 + x2) + 8 log (3x3 + x3)

s.t. x1 + x3 − 1 = 0

x2 + x4 − 1 = 0

2x1 + x2 − u1 = 0

3x3 + x4 − u2 = 0

x− s = 0

s ≥ 0

Based on the Lagrangian method, let the first block primal variables be x and the second be (u, s).

Then start from y0 repeat the ADMM steps. Note that all primal variables have close-form solutions.

4.4.2 Three-Blocks ADMM

What about ADMM for

min f1 (x1) + f2 (x2) + f3 (x3) s.t. A1x1 +A2x2 +A3x3 = b,

where the Lagrangian function

L (x1,x2,x3,y) =f1 (x1) + f2 (x2) + f3 (x3)− yT (A1x1 +A2x2 +A3x3 − b)

+
β

2
∥A1x1 +A2x2 +A3x3 − b∥2

Then, for any given
(
xk
1 ,x

k
2 ,x

k
3 ,y

k
)
, we compute a new iterate

xk+1
1 = argmin

x1

L
(
x1,x

k
2 ,x

k
3 ,y

k
)

xk+1
2 = argmin

x2

L
(
xk+1
1 ,x2,x

k
3 ,y

k
)

xk+1
3 = argmin

x3

L
(
xk+1
1 ,xk+1

2 ,x3,y
k
)

yk+1 = yk − β
(
A1x

k+1 +A2x
k+1
2 +A3x

k+1
3 − b

)
Not easy to analyze the convergence: the operator theory for the ADMM cannot be directly

extended to the ADMM with three blocks, since the proof for two blocks breaks down for three

blocks. Existing results for convergence:

• Strong convexity; plus carefully select β in a specific range.

• Other restricted conditions on the problem, and take a sufficiently smaller step-size factor

1 > γ > 0 in dual update.

yk+1 = yk − γβ
(
A1x

k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b

)
.
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• Various post correction steps, which are costly. But, these did not answer the open question

whether or not the direct extension of multi-block ADMM converges under the original simple

convexity assumption.

Theorem 4.25. There existing an example where the direct extension of ADMM of three blocks is

not necessarily convergent for any choice of β. Moreover, for any randomly generated initial point,

ADMM diverges with probability one.

The problem with unique solution x∗ = 0 :

min 0 · x1 + 0 · x2 + 0 · x3 s.t.

 1 1 1

1 1 2

1 2 2


 x1

x2

x3

 = 0,

Does the smaller step-size (1 > γ > 0) dual update work? Answer: it remains divergent when

solving

min 0 · x1 + 0 · x2 + 0 · x3 s.t.

 1 1 1

1 1 1 + γ

1 1 + γ 1 + γ


 x1

x2

x3

 = 0,

The ADMM with β = 1 is a linear matrix mapping

3 0 0 0 0 0

4 6 0 0 0 0

5 7 9 0 0 0

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1


(
xk+1yk+1

)
=



0 −4 −5 1 1 1

0 0 −7 1 1 2

0 0 0 1 2 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(
xkyk

)

we can give some comments to matrix M , we can simplify the good structure. Even if the we iterate

by many steps, the matrix M eigenvalue still is very large. We need try to reduce the eigenvalue

during iterating. which can be reduced to xk+1
2

xk+1
3

yk+1

 =M

 xk2

xk3

yk


where and it is the linear mapping

M =
1

162


144 −9 −9 −9 18

8 157 −5 13 −8
64 122 122 −58 −64
56 −35 −35 91 −56
−88 −26 −26 −62 88


But the spectral radius of the matrix, ρ(M) = 1.0087 > 1, which implies that the mapping is not a

contraction.
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Definition 4.26. Let λ1, . . . , λn be the eigenvalues of a matrix A ∈ Cn×n. The spectral radius of

A is defined as

ρ(A) = max {|λ1| , . . . , |λn|} . (4.30)

the trick we use is to take the average. ρ(Mi) > 1,∀i, then ρ(
∑n

i Mi

n ) < 1. In the sense, spectral

radius equals ρ(E[Mi]) < 1

In general, consider a convex optimization problem

min
x∈RN

f1 (x1) + . . .+ fn (xn)

s.t. Ax := A1x1 + · · ·+Anxn = b

xi ∈ Xi ⊂ Rdi , i = 1, . . . , n

L (x1, . . . ,xn;y) =
∑
i

fi (xi)− yT

(∑
i

Aixi − b

)
+
β

2

∥∥∥∥∥∑
i

Aixi − b

∥∥∥∥∥
2

The direct Cyclic Extension Multi-block ADMM:

x1 ←− arg min
x1∈X1

L (x1, . . . ,xn;y)

...

xn ←− arg min
xn∈Xn

L (x1, . . . ,xn;y)

y←− y − β(Ax− h)

we can use mathematics induction to prove why multi-block could work

4.4.3 Random-Permuted ADMM (RP-ADMM)

In each round, draw a random permutation σ = (σ(1), . . . , σ(n)) of {1, . . . , n}, and use the

Update Order : xσ(1) → xσ(2) → . . .→ xσ(n) → y

• This is equivalent to a random sample without replacement so it costs nothing.

• Interpretation: Force ”absolute fairness” among blocks.

• Simulation Test Result on solving linear equations: always converges!

We produced a positive result for ADMM on solving the system of linear equations.

Consider solving a nonsingular square system of linear equations ( fi = 0,∀i ). minx∈RN 0 0

s.t. A1x1 + · · ·+Anxn = b, RP-ADMM generates zk, an r.v., depending on

ξk = (σ1, . . . , σk) , zi =Mσiz
i−1, i = 1, . . . , k,

where σi is the random permutation at i-th round. Denote the expected iterate ϕk := Eξk

(
zk
)
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Theorem 4.27. The expected output converges to the unique solution of the linear system equations

any integer N ≥ 1.

Remark 4.28. Expected convergence ̸= convergence, but is a strong evidence for convergence for

solving most problems, e.g., when iterates are bounded.

• The update equation of RP-ADMM is

zk+1 =Mσz
k

where Mσ ∈ R2N×2N depend on σ.

• Define the expected update matrix as

M = Eσ (Mσ) =
1

n!

∑
σ

Mσ

Theorem 4.29. The spectral radius of M,ρ(M), is strictly less than 1 for any integer N ≥ 1.

Remark 4.30. For A in the divergence example, ρ (Mσ) > 1 for any σ. Averaging Helps

In general, consider a convex quadratic optimization problem

min
x∈RN

cT1 x1 + . . .+ cTnxn +
1

2
xTQx

s.t. Ax := A1x1 + · · ·+Anxn = b

Theorem 4.31. Under some technical assumptions, the expected output of randomly permuted

ADMM converges to the solution of the original problem for any integer N ≥ 1.

Here could we add the constraint xi ≥ 0. In fact, it does not work by ADMM. Because in

the iteration step, it is linear mapping. This specific constraint will block the linear mapping.

Experiment shows it could work but proof we do not know.

• Non-square system of linear equations - ”yes”

• Non-separable convex quadratic minimization with linear equality constraints - ”yes”

• Convergence w.h.p.??

• Generalize to inequality systems or convex optimization at large??

• Generalize to non-convex optimization??

• ADMM where, in every iteration, each block are randomly assembled without replacement??

Software based on ADMM

• SCS: http://www. stanford. edu/”boyd/cvx for CLP
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• ABIP: https: / github. com/sepvar/ABIP for solving LP

• RACQP: https://github. com/kmihic/RACQP for quadratic minimization with mixed con-

tinuous and integer decision variables.

Ref Chapter 8.6-7,9.1-9.5,10.1-4

4.5 Second Order Optimization Algorithms

4.5.1 1.5-Order Algorithm

Why the the method is 1.5-order? Because in the whole process, the Hessian matrix is involved.

However, we approximate the second order into first order information. And some paper could

provide the theoretical guarantee that it preform well.

Dimension Reduced Second Order Method

We expand to use the double direction method. If the problem is the convex function and the

Hessian matrix is PSD and the coefficient matrix is invertible

Let dk = xk − xk−1, gk = ∇f
(
xk
)
and Hk = ∇2f

(
xk
)
, then the step-sizes can be chosen from( (

gk
)T
Hkgk −

(
dk
)T
Hkgk

−
(
dk
)T
Hkgk

(
dk
)T
Hkdk

)(
αg

αm

)
=

( ∥∥gk
∥∥2

−
(
gk
)T

dk

)
(4.31)

If the Hessian ∇2f
(
xk
)
is not available, one can approximate. That’s why this is dimension reduced

method.

Hk gk ∼ ∇
(
xk + gk

)
− gk and Hk dk ∼ ∇

(
xk + dk

)
− gk ∼ −

(
gk−1 − gk

)
or for some small ϵ > 0 :

Hkgk ∼ 1

ϵ

(
∇
(
xk + ϵgk

)
− gk

)
and Hkdk ∼ 1

ϵ

(
∇
(
xk + ϵdk

)
− gk

)
.

Then we will introduce the Newton method

4.5.2 Ellipsoid Method

This is the first method to solve the linear program

Ellipsoids are just sets of the form

E =
{
y ∈ Rm : (y − y)TB−1(y − y) ≤ 1

}
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where y ∈ Rm is a given point (called the center) and B is a symmetric positive definite matrix of

dimension m. We can use the notation ell (y, B) to specify the ellipsoid E defined above. Note that

vol(E) = (detB)1/2 vol(S(0, 1))

where S(0, 1) is the unit sphere in Rm. and vol is the volume. How to iterate? We will use the half

ellipsoid to generate the new one.

By a Half-Ellipsoid of E, we mean the set

1

2
Ea :=

{
y ∈ E : aTy ≤ aTy

}
for a given non-zero vector a ∈ Rm where y is the center of E - the intersection of the ellipsoid and

a plane cutting through the center. We are interested in finding a new ellipsoid containing 1
2Ea with

the least volume.

The new ellipsoid E+ = ell
(
y+, B+

)
can be constructed as follows. Define

τ :=
1

m+ 1
, δ :=

m2

m2 − 1
, σ := 2τ

And let
y+ := y − τ

(aTBa)
1/2

Ba

B+ := δ

(
B − σBaaTB

aTBa

)
Theorem 4.32. Ellipsoid E+ =ell

(
y+, B+

)
defined as above is the ellipsoid of least volume con-

taining 1
2Ea. Moreover,

vol (E+)

vol(E)
≤ exp

(
− 1

2(m+ 1)

)
(4.32)

This theorem indicate the ellipsoid strictly decreases. consider a standard linear program

min cTx

s.t. Ax ≤ b

we could use penalty function to relax

min cTx+MI(Ax− b)

Where M is big value

The ellipsoid method also work in the non-smooth objective function. In addition, we introduce

the average case analysis.

In computational complexity theory, the average-case complexity of an algorithm is the amount

of some computational resource (typically time) used by the algorithm, averaged over all possible in-

puts. It is frequently contrasted with worst-case complexity which considers the maximal complexity

of the algorithm over all possible inputs.
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Figure 4.3: Ellipsoid Method

There are three primary motivations for studying average-case complexity. First, although some

problems may be intractable in the worst-case, the inputs which elicit this behavior may rarely

occur in practice, so the average-case complexity may be a more accurate measure of an algorithm’s

performance. Second, average-case complexity analysis provides tools and techniques to generate

hard instances of problems which can be utilized in areas such as cryptography and derandomization.

Third, average-case complexity allows discriminating the most efficient algorithm in practice among

algorithms of equivalent best case complexity (for instance Quicksort).

Average-case analysis requires a notion of an ”average” input to an algorithm, which leads to the

problem of devising a probability distribution over inputs. Alternatively, a randomized algorithm

can be used. The analysis of such algorithms leads to the related notion of an expected complexity

Example 4.33. Qicksort has a worst-case running time of O(n2), but an average-case running time

of O(n log n), where n is the length of the input to be sorted.

4.5.3 Newton Method

Consider the two order Taylor expansion

f(x) ≈ f(xk) +∇f(xk)(x− xk)
T +

1

2
(x− xk)

T∇2f(xk)(x− xk)

The right hand could be minimized by derivative

xk+1 = xk − [∇2f(xk)]
−1∇f(xk)

T
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the first modification is that usually a search parameter α

xk+1 = xk − α[∇2f(xk)]
−1∇f(xk)

T

We now introduce the second-order β-Lipschitz condition: for any point x and direction vector d∥∥∇f(x+ d)−∇f(x)−∇2f(x)d
∥∥ ≤ β∥d∥2,

which implies

f(x+ d)− f(x) ≤ ∇f(x)Td+
1

2
dT∇2f(x)d+

β

3
∥d∥3.

In the following, for notation simplicity, we use g(x) = ∇f(x) and ∇g(x) = ∇2f(x). Thus,

xk+1 = xk −
(
∇g
(
xk
))−1∇f

(
xk
)
, or ∇g

(
xk
) (

xk+1 − xk
)
= −g

(
xk
)

Indeed, Newton’s method was initially developed for solving a system of nonlinear equations in the

form g(x) = 0

Theorem 4.34. Let f(x) be β-Lipschitz and the smallest absolute eigenvalue of its Hessian uni-

formly bounded below by λmin > 0. Then, provided that
∥∥x0 − x∗

∥∥ is sufficiently small, the sequence

generated by Newton’s method converges quadratically to x∗ that is a KKT solution with g (x∗) = 0.

∥∥xk+1 − x∗
∥∥ =

∥∥∥xk − x∗ −∇g
(
xk
)−1

g
(
xk
)∥∥∥

=
∥∥∥∇g (xk)−1 (

g
(
xk
)
−∇g

(
xk
) (

xk − x∗
))∥∥∥

=
∥∥∥∇g (xk)−1 (

g
(
xk
)
− g (x∗)−∇g

(
xk
) (

xk − x∗
))∥∥∥

≤
∥∥∥∇g (xk)−1

∥∥∥ ∥∥g (xk)− g (x∗)−∇g
(
xk
) (

xk − x∗
)∥∥

≤
∥∥∥∇g (xk)−1

∥∥∥β ∥∥xk − x∗
∥∥2 ≤ β

λmin

∥∥xk − x∗
∥∥2

Thus, when β
λmin

∥∥x0 − x∗
∥∥ < 1, the quadratic convergence takes place:

β

λmin

∥∥xk+1 − x∗∥∥ ≤ ( β

λmin

∥∥xk − x∗∥∥)2

. (4.33)

Such a starting solution x0 is called an approximate root of g(x).
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